High resistance to ciprofloxacin, tetracycline, and penicillin and emergence of decrease susceptibility to ceftriaxone in Neisseria gonorrhoeae, Cuba, 2009-2013

Authors

DOI:

https://doi.org/10.70099/BJ/2025.02.04.18

Keywords:

Neisseria gonorrhoeae, antimicrobial resistance, Cuba, susceptibility, ceftriaxone, azithromycin, MDR-GC

Abstract

Antimicrobial-resistant Neisseria gonorrhoeae remains a global public health threat, and contemporary data from the Caribbean region are scarce. We conducted a nationwide analysis of 152 isolates collected in Cuba between 2009 and 2013 to characterize antimicrobial susceptibility patterns and major chromosomal and plasmid-mediated resistance phenotypes. Susceptibility to penicillin, tetracycline, ceftriaxone, ciprofloxacin, spectinomycin, gentamicin, and azithromycin was determined using the E-test method according to CLSI criteria. High resistance to ciprofloxacin (69.7%), tetracycline (40.1%), and penicillin (36.8%) was identified, along with moderate resistance to azithromycin (13.8%). Two isolates exhibited decreased susceptibility to ceftriaxone (MIC = 0.5 µg/mL), and two others to gentamicin (MICs of 32 and 64 µg/mL); six isolates were multidrug-resistant N. gonorrhoeae (MDR-GC). However, no extensively drug-resistant (XDR) isolates were detected. These findings support the continued use of ceftriaxone but highlight the urgent need for enhanced surveillance, including molecular characterization, to prevent the establishment of extensively drug-resistant gonorrhoea in Cuba.

References

1. World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021: accountability for the global health sector strategies 2016–2021. Geneva: WHO; 2021.

2. World Health Organization. WHO bacterial priority pathogens list, 2024. Geneva: WHO; 2024.

3. Ministerio de Salud Pública. Anuario Estadístico de Salud de Cuba, 2024. La Habana: MINSAP; 2025.

4. Llanes R, Sosa J, Guzmán D, Llop A, Valdés EA, Martínez I, et al. Antimicrobial susceptibility of Neisseria gonorrhoeae in Cuba (1995–1999). Sex Transm Dis. 2003;30(1):10–14.

5. Llorente C, Sosa J, Llanes R, Pérez J, Hernández J. Susceptibilidad antimicrobiana y perfil plasmídico en cepas cubanas de Neisseria gonorrhoeae. Bioquimia. 2002;27(3):69–74.

6. Llanes R, Sosa J, Guzmán D, Gutierrez O, Llop A, Ricardo O. Neisseria gonorrhoeae resistant to ciprofloxacin: first report in Cuba. Sex Transm Dis. 2001;28(2):82–83.

7. Sosa J, Li H, Ramírez S, Ruben M, Llanes R, Llop A, et al. High resistance to penicillin and tetracycline and decreased susceptibility to azithromycin in Cuban N. gonorrhoeae. Sex Transm Dis. 2003;30(5):144–148.

8. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. 34th ed. CLSI; 2024.

9. Mann LM, Kirkcaldy RD, Papp JR, Torrone EA. Susceptibility of Neisseria gonorrhoeae to gentamicin—GISP 2015–2016. Sex Transm Dis. 2018;45:96–98.

10. European Centre for Disease Prevention and Control. Gonococcal antimicrobial susceptibility surveillance in the EU/EEA, 2023. Stockholm: ECDC; 2025.

11. Herrero M, Broner S, Cruells A, Esteve S, Ferré L, Mendioroz J, et al. Epidemiology and AMR profile of Neisseria gonorrhoeae in Catalonia, 2016–2019. Eur J Clin Microbiol Infect Dis. 2023;42:883–893.

12. Starmino S, Galarza P, Trigoso ME, Schwartz A, Maldonado A, Sanabria OM, et al. Antimicrobial susceptibility trends (2000–2009) in LAC countries. Sex Transm Dis. 2012;39(10):813–821.

13. Gianecini R, Romero MLM, Oviedo C. Decreased susceptibility to ESCs in Argentina, 2009–2013. Sex Transm Dis. 2017;44:351–355.

14. Hooshiar MH, Sholeh M, Beig M, Azizian K, Kouhsari E. Global trends of antimicrobial resistance rates in Neisseria gonorrhoeae: a systematic review and meta-analysis. Front. Pharmacol. 2024; 15:1284665.

15. Gianecini RA, Zittermann S, Oviedo C, Galas M, Ramon P, Allen VG. WGS comparison of ESC-decreased susceptibility isolates in the Americas. Sex Transm Dis. 2019;46(8):548–555.

16. Rafetrarivony LF, Rabenandrasana MAN, Hariniaina ER, Randrianirina F, Smith AM. AMR profile of N. gonorrhoeae in Madagascar, 2014–2020. Sex Transm Infect. 2024;100:25–30.

17. Shaskolskiy B, Dementieva E, Kandinov I, Filippova M, Petrova N, Plakhova X, et al. Chromosomal determinants of β-lactam resistance in Russia, 2015–2017. PLoS One. 2019;14(7):e0220339.

18. Dillon J-AR, Trecker MA, Thakur SD, Llop A, Llanes R, Maldonado A, et al. Two decades of GASP in South America and the Caribbean. Sex Transm Infect. 2013;89(Suppl 4):iv36–iv41.

19. Riedel S, Vijayakumar D, Berg G, Kang AD, Smith KP, Kirby JE. Apramycin activity vs spectinomycin-resistant N. gonorrhoeae. J Antimicrob Chemother. 2019;74:1311–1316.

20. Le Van A, Rahman N, Sandy R, Dozier N, Smith HJ, Martin MJ, et al. Global gonococcal surveillance patterns, 2014–2022. Emerg Infect Dis. 2024;30(Suppl 14):S62–S70.

21. Unemo M, Seifert HS, Hook EW, Hawkes S, Ndowa F, Dillon JA. Global trends in AMR in Neisseria gonorrhoeae: a systematic review and meta-analysis. Front Pharmacol. 2024;1284665.

22. Ministerio de Salud Pública. Plan Estratégico Nacional ITS/VIH/Hepatitis 2019–2023. La Habana: MINSAP; 2019.

23. Canada Public Health Agency. Multidrug-resistant and extensively drug-resistant N. gonorrhoeae in Canada, 2012–2016. CCDR. 2019;45(2):1–10.

24. WHO GASP. Strengthening global surveillance of drug-resistant Neisseria gonorrhoeae. Geneva: WHO; 2021.

Downloads

Published

2025-12-15

How to Cite

Llanes, R. (2025). High resistance to ciprofloxacin, tetracycline, and penicillin and emergence of decrease susceptibility to ceftriaxone in Neisseria gonorrhoeae, Cuba, 2009-2013. BioNatura Journal: Ibero-American Journal of Biotechnology and Life Sciences, 2(4), 11. https://doi.org/10.70099/BJ/2025.02.04.18

Issue

Section

Research Articles

Categories