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This study presents a methodology for automatically detecting neuromuscular diseases through preprocessing 
and classifying electromyography (EMG) signals. The presented approach integrates Gaussian Copula-based 
denoising techniques with feature extraction and Random Forest classification. To assess the performance, the 
study performs a comprehensive evaluation of various denoising techniques, including Empirical Mode De-
composition (EMD), Variational Mode Decomposition (VMD), Wavelet Thresholding Denoising (WTD), and 
Gaussian Copula Denoising (GCD). The study also compares the effectiveness of several classification algo-
rithms, such as Random Forest (RF), Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), 
and Decision Tree (DT). The methodology demonstrated exceptional performance, achieving an overall ac-
curacy greater than 99% in distinguishing between healthy, myopathic, and neuropathic EMG signals. The 
proposed method's effectiveness is attributed to its noise reduction capabilities, feature selection focusing on 
mean amplitude and amplitude range, and the Random Forest algorithm's adeptness in classifying EMG data. 
The study's findings underscore the proposed method's accuracy and effectiveness and highlight its potential 
to revolutionize clinical diagnostics of neuromuscular disorders, offering a powerful tool for more precise and 
timely interventions. 
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The backbone of science, technological advancement, and information dissemination are signals. These sig-
nals manifest as patterns with varying amplitudes and frequencies, spanning fields from telecommunications 
to biomedical engineering. Analyzing and interpreting these signals is crucial yet challenging, requiring meth-
ods to extract key features from noisy datasets. This process involves understanding signal relationships, iden-
tifying meaningful patterns amid interference, and tailoring techniques for specific applications1. One signif-
icant challenge in electromyography (EMG) applications is the early detection of neuromuscular diseases 
(NMD). Individuals with NMD face a broader spectrum of chronic illnesses and health symptoms compared 
to the general populace2. Delays in diagnosing and identifying these diseases can result in severe consequences, 
including reduced treatment effectiveness and a more substantial negative impact on the patient's quality of 
life3. Muscle recruitment timing is crucial for developing electromyography-powered assistive devices, clini-
cal analyses, and muscle-machine interface applications. 

Traditionally, muscle activation identification relies on visual inspections by trained experts, which are time-
consuming, non-reproducible and impractical for large datasets4. These traditional methods are also suscepti-
ble to human error, compromising the accuracy of results. Acquiring detailed information about human health 
is the primary goal of collecting, preprocessing, and analyzing physiological signals. These signals, covering 
many biological parameters, offer a comprehensive view of human body function5,6. Changes in these signals 
and the normal and abnormal physiological processes they represent have broad applications in medicine. 
These include clinical diagnosis, ongoing patient monitoring, assessing treatment effectiveness, and develop-
ing new biomedical signal preprocessing techniques7. Despite advancements in semi-automated techniques, 
challenges persist in preprocessing physiological signals, particularly electromyography (EMG)8.  

These methods often require manual input to optimize detection algorithm parameters and necessitate adjust-
ments for each muscle group, individual, and movement, rendering them inefficient for large-scale data pre-
processing9. Moreover, the nature of EMG signals introduces considerable variations in signal-to-noise ratios 
(SNR) between different muscle groups, complicating the detection of neuromuscular diseases10,11. EMG de-
noising methods have fundamentally addressed these challenges, especially when combined with implement-
ing artificial intelligence techniques12. This synergy has become indispensable for accurately interpreting, 
classifying, and detecting EMG signals. Currently, research has focused on addressing this problem compre-
hensively, ranging from gesture classification and early detection of muscle fatigue to applications of machine 
learning techniques, all enhanced by improved signal quality achieved through reducing noise techniques13,14. 
Recent advancements in signal denoising have focused on three principal techniques: Empirical Mode De-
composition (EMD)13,15,16, Variational Mode Decomposition (VMD)17–19, and Wavelet Thresholding De-
noising (WTD)20–22.  

These approaches have remarkably addressed complex signal preprocessing challenges, particularly for intri-
cate biomedical signals like EMGs. EMD, designed for non-linear and non-stationary signals, decomposes 
waveforms into Intrinsic Mode Functions (IMFs), proving particularly advantageous for noise reduction in 
complex signals15,23.  

VMD, decomposes signals into a predetermined number of oscillation modes, overcoming limitations of EMD 
such as noise sensitivity and challenges in discriminating between closely spaced frequency components17. 

 
INTRODUCTION 
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WTD employs wavelet transformation to attenuate noise by applying threshold parameters to wavelet coeffi-
cients, utilizing both soft and hard thresholding approaches24. Among this domain's most prevalent classifica-
tion modelsupport Vector Machine (SVM)11, Convolutional Neural Networks (CNN)25 and Random Forests26. 
These methodologies are frequently employed for multiclass classification tasks, offering sophisticated ap-
proaches to complex data analysis. Despite these advancements, the field of muscle activation remains rela-
tively unexplored, presenting challenges in EMG signal preprocessing, feature selection, and identifying op-
timal models for classifying neuromuscular diseases27. Artificial intelligence, including machine learning and 
deep learning techniques28, has shown promise in classifying electromyography signals29,30. A critical aspect 
of improving EMG signal analysis is addressing the noise introduced during signal acquisition31. Various 
exogenous and endogenous factors, including myoelectric contractions and electromagnetic interference from 
power grids, combined with the inherent stochasticity of physiological signals, can significantly compromise 
data quality32,33. To mitigate these issues, reducing noise methodologies have been developed.  

Table 3 presents a comprehensive overview of the most effective signal preprocessing and classification 
methodologies employed to achieve the objective mentioned above. These methods include: k-Nearest Neigh-
bors (K-NN) implementing tunable-Q factor wavelet transform (TQWT) as a preprocessing step34; Support 
Vector Machine (SVM) using Sample Entropy (SE) and Mean Absolute Deviation (MAD) as feature extrac-
tion techniques11; Binarized Neural Network (BNN) employing Fast Fourier Transform (FFT) preprocessing35; 
Machine Learning (ML) pipeline leveraging Motor Unit Potentials (MUPs) for preprocessing36; Deep Learn-
ing (DL) incorporating Butterworth filter (BF) preprocessing37; Random Forest (RF) with Fast Fourier Trans-
form (FFT) preprocessing38; and Machine Learning (ML) utilizing signal-to-noise ratio (SNR) analysis for 
preprocessing39; This diverse array of approaches demonstrates the ongoing evolution and refinement of signal 
processing and classification techniques in the field. 

Kiran PU et al.34 conducted a study focusing on classifying electromyography (EMG) signals from individuals 
with amyotrophic lateral sclerosis (ALS) and healthy subjects. The research utilized tunable-Q factor wavelet 
transform (TQWT) features. The methodology involved decomposing EMG signals into sub-bands using 
TQWT and extracting statistical features, including mean absolute deviation (MAD), interquartile range (IQR), 
kurtosis, mode, and entropy. These features were subsequently evaluated using k-Nearest Neighbors (K-NN) 
classifiers. The proposed approach demonstrated enhanced classification performance compared to existing 
methods, achieving a classification accuracy of 0.95.  

Abdul Wadud et al.11 developed a feature extraction and classification model for distinguishing between 
healthy and myopathic EMG signals. The research employed a comprehensive approach to signal prepro-
cessing, encompassing normalization via bandpass filtering and subsequent signal segmentation into frames. 
The feature extraction phase employed two primary techniques: Sample Entropy (SE), which quantifies signal 
complexity and regularity, and Mean Absolute Deviation (MAD), which assesses data variability relative to 
its meaning. Mean Squared Error (MSE) was calculated to optimize classification performance to determine 
the most compelling feature. The final classification step utilized SVM classifiers to differentiate between 
standard and myopathic cases. The model's efficacy was evaluated, and an accuracy of 0.99 was obtained.  

Soongyu Kang et al.35 developed a hand gesture recognition system based on surface electromyography 
(sEMG) technology. Their signal preprocessing methodology involved transforming raw sEMG data into 
spectrograms, effectively capturing time-frequency domain information. The spectrogram generation process 
employed a 128-point Fast Fourier Transform (FFT) with a Hamming window and 50% overlap. For the 
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classification task, they implemented a binarized neural network (BNN) on a field-programmable gate array 
(FPGA), leveraging the efficiency of this lightweight convolutional neural network (CNN) variant. This pro-
posed system achieved a classification accuracy of 0.95. 

M.R. Tannemaat et al.36 conducted a study utilizing a time series classification algorithm to differentiate be-
tween normal, neuropathic, and myopathic electromyography (EMG) tracings. The signal preprocessing phase 
involved a visual examination of the raw trace to identify the most suitable continuous fragment containing 
motor unit potentials (MUPs), ensuring the absence of needle movement, 50 Hz artifacts, or other disturbances. 
Subsequently, 5-second EMG fragments were extracted from each muscle for analysis. The study employed 
a machine learning (ML) pipeline as the primary classification method. In distinguishing EMGs of healthy 
individuals from those with ALS, an accuracy of 0.834 at the muscular level and 0.856 at the patient level was 
achieved.  

The study conducted by Xiaoyuan Luo et al.37 implemented a gesture recognition performance utilizing sur-
face electromyography (sEMG) signals. They developed a Deep Learning (DL) approach based on ResNet50. 
For sEMG signal preprocessing, the researchers implemented a full-wave rectifier followed by a Butterworth 
filter (BF) to eliminate noise, a critical step in optimizing signal quality before analysis. The classification 
methodology incorporates multi-scale modules and self-attention mechanisms within the ResNet50 architec-
ture, thereby improving the extraction of channel feature information from sparse sEMG signals. The study 
yielded promising results. When evaluated on the NinaPro DB1 and NinaPro DB5 datasets, the model 
achieved recognition accuracies of 0.8794 and 0.8704, respectively. Furthermore, in predicting the grasping 
mode of an electromyographic manipulator, it attained an accuracy of 0.8837.  

The research conducted by Pranav Madhav Kuber et al.38 investigated fatigue detection during exoskeleton-
assisted trunk flexion tasks utilizing machine learning techniques. The methodology involved preprocessing 
data by extracting 135 features from muscle activity recordings, trunk motion measurements, and whole-body 
stability assessments across various segments of each trunk-flexion cycle. Feature extraction techniques in-
cluded Fast Fourier Transform (FFT) for frequency domain analysis and Root Mean Square (RMS) for EMG 
signal processing. The study employed the Random Forest (RF) classification algorithm. Results indicated 
that RF demonstrated significant efficacy in classifying fatigue using data from a single EMG sensor posi-
tioned on the lower back muscle. This approach yielded an accuracy of 0.92, and a recall of 0.91.  

The study conducted by Iqram Hussain et al.39 implemented a preprocessing methodology for electromyo-
graphic (EMG) signals using signal-to-noise ratio (SNR) analysis. This process encompassed noise filtration 
through SNR, allowing for identifying and eliminating EMG epochs exhibiting insufficient signal quality, 
with particular emphasis on those affected by low-frequency motion artifacts. Gait signals from 48 stroke 
patients and 75 healthy controls were analyzed. The researchers employed Machine Learning (ML) method-
ologies to develop an interpretable framework. This framework was designed to accurately distinguish be-
tween the characteristic myoelectric patterns observed in stroke patients and those of healthy individuals.  

The best classification model demonstrated a performance metric of 0.94 during cross-validation with the 
training dataset. Upon evaluation using the EMG test dataset, the model achieved an accuracy of 0.92 and a 
precision of 0.85. Despite advancements in EMG signal preprocessing, clinical implementation remains chal-
lenging due to issues such as biases and overtraining40. This study tackles these challenges by optimizing 
signal preprocessing through Gaussian Copula Denoising. It aims to identify the ideal combination of this 
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innovative preprocessing technique with suitable machine learning algorithms and EMG signal feature selec-
tion. The objective is to assess the effectiveness and precision of this approach in diagnosing neuromuscular 
diseases. 

Gaussian copulas have emerged as a powerful statistical tool, gaining widespread adoption across diverse 
fields. Their applications include feature reduction in multi-parameter fusion methods for blood pressure es-
timation41, multidimensional synthesis in electronic systems42, complex signal analysis, where the signals ex-
hibit intricate dependency structures43. These applications demonstrate the versatility and effectiveness of 
Gaussian copulas in handling intricate data structures and dependencies. This study employs Gaussian copulas 
as an advanced method to capture and model the complex dependencies inherent in EMG signal data. This 
statistical approach enables a more refined and comprehensive understanding of the multifaceted relationships 
present in EMG signals, potentially yielding more accurate, reliable, and insightful analyses. The noise reduc-
tion process for EMG signals using Gaussian copulas involves a systematic approach that capitalizes on the 
inherent dependency structure within the data. This process encompasses several key steps: signal segmenta-
tion, rank transformation, Gaussian copula fitting, correlation matrix estimation, copula-based filtering, and 
finally, reconstruction of the noise-reduced signal. 

The decision to utilize Gaussian copulas for EMG signal preprocessing is grounded in their exceptional ca-
pacity to model multivariate distributions effectively, even in challenging scenarios where the underlying 
marginal distributions significantly deviate from Gaussian norms44. This attribute is precious in biomedical 
signal processing, where data often exhibit highly intricate non-linear relationships and complex interdepend-
encies. The adaptability of Gaussian copulas to non-Gaussian distributions renders them exceptionally well-
suited for addressing the multifaceted complexities frequently encountered in EMG signals, which a wide 
array of physiological and environmental factors can influence. The Random Forest classification algorithm 
will be employed as a benchmark for performance assessment to evaluate the efficacy of the Gaussian copula 
denoising method. This machine learning technique will be utilized to classify the preprocessed EMG signals, 
allowing for a comprehensive comparison of classification accuracy between the Gaussian copula approach 
and other noise reduction methods. By leveraging the Random Forest algorithm's inherent ability to handle 
high-dimensional data and capture complex non-linear relationships, we aim to provide a thorough and unbi-
ased assessment of the Gaussian copula denoising method's impact on signal quality and subsequent classifi-
cation performance. This comparative analysis will not only elucidate the relative merits of our proposed 
approach but also contribute valuable insights to the broader field of biomedical signal processing. 

The paper is structured as follows: Section 2 details the implemented methodology, including data acquisition, 
signal preprocessing, segmentation and feature extraction, classification models, and performance metrics. 
Section 3 presents the complete experimental results. Section 4 analyses and compares the performance of 
different methods used to classify healthy, neuropathy, and myopathy signals. Finally, the conclusions are 
provided in Section 5. 

 

 

The schematic representation of the generic electromyographic (EMG) detection system presented in Figure 
1, designed to achieve the main objective, begins with acquiring the EMG signal. In our research, this signal 

 
MATERIAL AND METHODS 
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is obtained from the Physionet database45. Subsequently, the signal undergoes a preprocessing phase, followed 
by a segmentation and characterization stage. Next, classification is implemented using advanced machine-
learning techniques. Finally, evaluation metrics are applied to determine the accuracy and effectiveness of the 
proposed system. This methodological approach integrates key stages for robust analysis of EMG signals, 
facilitating information extraction and precise pattern identification. 

 

 
Figure 1. Electromyographic detection systems encompass signal acquisition, preprocessing, segmentation, characteriza-
tion, classification, and evaluation metrics aimed to achieve the primary objective. 

To determine the most effective method for detecting neuromuscular diseases, data denoising based on Gauss-
ian Copula Denoising (GCD) was employed and tested. This method is essential to remove unnecessary signal 
noise by rescuing the relevant to identify the underlying patterns in EMG signals, which are crucial for accu-
rate disease detection. The study commenced with the acquisition of EMG data using the Physionet Base Data 
website45. Following data acquisition, thorough preprocessing was conducted, including noise filtering and 
data normalization, to maintain consistency across different samples. Four different methods for noise filtering 
were tested including innovative Empirical Mode Decomposition (EMD), Variational Mode Decomposition 
(VMD), Wavelet Thresholding Denoising (WTD), and Gaussian Copula Diagnosing (GCD).  

Characteristics of the data were then extracted, including mean amplitude and amplitude range. After feature 
extraction, classification was performed using Random Forest (RF), Convolutional Neural Networks (CNN), 
Multilayer Perceptron (MLP), and Decision Tree (DT) methodologies. The classification models were evalu-
ated using standard metrics such as Recall, Accuracy, Precision, and F-Score. This evaluation was pivotal in 
assessing model performance and involved a comprehensive analysis of various performance indicators.  

Finally, the models were compared using the evaluation as mentioned earlier metrics. This comparison was 
instrumental in identifying the most effective method for detecting neuromuscular diseases, offering valuable 
insights into each approach's strengths and weaknesses. The detailed analysis of these metrics ensured the 
chosen model was accurate but also reliable and robust across various testing conditions. 
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Data acquisition 

The study utilizes EMG signals to investigate neuromuscular diseases, encompassing both neuropathy and 
myopathy. These signals, available on the Physionet Base Data website45, were carefully collected using an 
Oxford Instruments Medical Medelec Synergy N2 EMG monitoring system15. The dataset comprises individ-
uals both with and without neuromuscular conditions. Specifically, data were obtained from three patients: a 
44-year-old man with no neuromuscular disease history, a 62-year-old man with chronic low back pain and 
neuropathy due to right L5 radiculopathy, and a 57-year-old man with myopathy resulting from polymyositis. 
The EMG signals were initially captured at a sampling frequency of 50 KHz (50,000 Hertz), allowing for a 
detailed signal representation with 50,000 samples per second. Subsequently, the data were down-sampled to 
4 KHz (4,000 Hertz) to facilitate a more manageable analysis. This down-sampling is particularly useful as 
higher frequencies often do not contribute significant additional information46. 

The database selection for this study was based on several critical factors that ensure robustness and relevance. 
Firstly, the chosen database contains EMG signals from healthy subjects, myopathy patients, and neuropathy, 
which aligns perfectly with our objective of classifying neuromuscular diseases. This clinical relevance is 
paramount for the applicability of our findings. Additionally, the database is widely recognized and utilized 
within the scientific community, guaranteeing the quality and reliability of the data, which is crucial for the 
validity of our results. Furthermore, using a standardized database facilitates direct comparison of our results 
with other studies in the field, enhancing the validation and reproducibility of our research19. While other 
EMG signal databases exist, the one selected for this study offers the optimal balance between clinical rele-
vance, data quality, and applicability to our specific research objectives. This careful selection process under-
scores our commitment to conducting rigorous and impactful research in neuromuscular disease classification 

47. 

Signal preprocessing 

During the data recording process, a 20 Hz high-pass filter and a 5 KHz low-pass filter were applied. The 
high-pass filter removed frequencies below 20 Hz, while the low-pass filter excluded frequencies above 5 
KHz. These filtering steps were crucial for eliminating noise and irrelevant signals outside the target frequency 
range, ensuring the collected data was clean and precise. This meticulous approach enhances the accuracy of 
studies related to neuromuscular diseases, thereby facilitating better understanding and treatment. Subse-
quently, a normalization procedure was executed to nullify negative data values, followed by a thorough com-
parative analysis of four distinct noise reduction methodologies for EMG signal refinement, including inno-
vative Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD), Wavelet Thresh-
olding Denoising (WTD), and Gaussian Copula Diagnosing (GCD). 

The primary objective of this evaluation was to identify the most efficacious technique for noise attenuation 
while preserving critical signal characteristics. This approach is paramount for maintaining the integrity of 
clinically pertinent information, thereby optimizing feature extraction by mitigating noise interference while 
keeping the temporal structure of the signal. Consequently, this enables a more nuanced extraction of salient 
features for the subsequent classification of neuromuscular pathologies based on EMG signals. These pivotal 
steps adequately prepare the signal for ensuing segmentation and feature extraction processes. This holistic 
and methodical approach is essential for ensuring the reliability and reproducibility of research outcomes, 
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thereby establishing a robust foundation for future investigative endeavors and potential clinical applications 
in neuromuscular diagnostics18. 

Empirical Mode Decomposition 

This groundbreaking study harnesses the power of an innovative Empirical Mode Decomposition (EMD) de-
noising function. The EMD process, with its remarkable adaptability, deftly separates the signal 𝑥𝑥(𝑡𝑡) Into a 
finite array of oscillatory components, each serving as a distinct, high-resolution snapshot of the original sig-
nal's multifaceted structure: 

𝑥𝑥(𝑡𝑡) =  �𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

+  𝑟𝑟𝑛𝑛(𝑡𝑡) (1) 

wherein 𝑐𝑐𝑖𝑖(𝑡𝑡) signifies the Intrinsic Mode Functions (IMFs) and  𝑟𝑟𝑛𝑛(𝑡𝑡) embodies the residual component. 
Following this decomposition, the function artfully reconstructs the signal by amalgamating all IMFs, with 
the notable exclusion of the first. This judicious reconstruction is predicated on the principle that the inaugural 
IMF typically encapsulates the highest frequency components, which frequently correspond to extraneous 
noise or undesirable artifacts in EMG signals. By excluding this component, the function effectively attenuates 
high-frequency noise while preserving the quintessential characteristics of the EMG signal. To enhance com-
putational efficiency, the EMD denoising process uses parallel computing techniques. This approach speeds 
up processing time for large EMG datasets. The EMG signals are divided into manageable batches, each 
processed independently on separate cores. The total processing time T can be estimated as: 

𝑇𝑇  ←
𝑁𝑁
𝐵𝐵𝐵𝐵

𝑡𝑡  + 𝑂𝑂  (2) 

Where N is the total data points, B is the batch size, C is the number of cores used, t is the time to process one 
batch, and O is the overhead time. This method optimizes resource use and allows efficient processing of large 
datasets. It processes EMG data segments simultaneously, reducing overall processing time while maintaining 
denoising quality for each batch16–19. 

Variational Mode Decomposition 

We employ Variational Mode Decomposition (VMD) as a signal-denoising technique to separate signals into 
distinct oscillatory modes. This method is implemented through a custom function designed for electromyo-
graphic (EMG) signal preprocessing, addressing the challenges in EMG data analysis. The VMD function 
decomposes the input EMG signal into Intrinsic Mode Functions (IMFs), each representing a unique frequency 
component. Mathematically, VMD is formulated as an optimization problem: 
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min
{𝑢𝑢𝑘𝑘},{ω𝑘𝑘}

�� | ∂𝑡𝑡 ��δ(𝑡𝑡) +
𝑗𝑗
π𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗ω𝑘𝑘𝑡𝑡 |22

𝐾𝐾

𝑘𝑘=1

� (3) 

In this formulation, 𝑢𝑢𝑘𝑘 represents modes, ω𝑘𝑘 center frequencies, the function involves the input signal, and 
k is the number of modes. This framework enables accurate EMG analysis. The function reconstructs the 
signal by removing high-frequency noise and excluding lower-frequency with less relevant information. This 
approach, balances noise reduction and preservation of key signal features. It is particularly effective for EMG 
signals, where important information is often within a specific frequency range. The result is a refined signal 
that maintains essential features of the original EMG recording, enabling more accurate analysis and classifi-
cation of neuromuscular diseases. This method significantly improves EMG signal preprocessing, potentially 
enhancing diagnostic accuracy in clinical neurology and advancing neuromuscular disease classification17,18. 

Wavelet Thresholding Denoising 

The methodology for preprocessing EMG signals using Wavelet Thresholding Denoising (WTD) enhances 
signal fidelity for more precise analysis. The process involves several key stages48, starting with the spectral 
decomposition. Applies Discrete Fourier Transform (DFT) to decompose the EMG signal into frequency com-
ponents: 

𝑋𝑋[𝑘𝑘] =   � 𝑥𝑥[𝑛𝑛]𝑒𝑒
−𝑗𝑗2π𝑘𝑘𝑛𝑛

𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

 (4) 

Where 𝑥𝑥[𝑛𝑛] is the input signal, 𝑋𝑋[𝑘𝑘] is the transformed signal, N is the total samples, k is the frequency 
index, and n is the temporal index. Frequencies are calculated as: 

𝑓𝑓[𝑘𝑘] =   
𝑓𝑓𝑠𝑠
𝑁𝑁

 (5) 

With 𝑓𝑓[𝑘𝑘] as frequency in Hz and fs as sampling frequency (1000 Hz). The magnitude spectrum is computed 
by: 

|𝑋𝑋[𝑘𝑘]| =  �{𝑅𝑅𝑒𝑒(𝑋𝑋[𝑘𝑘])2 +  𝑚𝑚(𝑋𝑋[𝑘𝑘])2} (6) 

Regarding wavelet denoising, this process employs VisuShrink thresholding. A wavelet decomposition was 
performed using Discrete Wavelet Transform (DWT). This transforms the signal into wavelet coefficients at 
different scales and positions. Then, the VisuShrink threshold, which is an adaptive threshold based on the 
noise level of the signal, was calculated. This threshold was then applied to the wavelet coefficients using a 
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soft threshold, which helps remove noise while preserving important signal features. Finally, the signal was 
reconstructed using Inverse Discrete Wavelet Transform (IDWT). Then, signal reconstruction, after noise re-
moval, inverse wavelet transform (IWT) was used to recover the signal. The coefficients were first augmented 
by zero insertion. Then, convolution was performed with reconstruction filters, and finally, the convolution 
results were added to obtain the reconstructed signal49,50. 

𝑥𝑥[𝑛𝑛] =  𝑥𝑥{𝑗𝑗−1}[𝑛𝑛] +  𝑥𝑥{𝑗𝑗}[𝑛𝑛] (7) 

This comprehensive methodology is applied to healthy, myopathic, and neuropathic EMG signals. It incorpo-
rates Spectral Decomposition for frequency analysis, Wavelet-based Noise Reduction for signal cleaning, 
Adaptive Thresholding for noise level adjustment, and Signal Reconstruction for obtaining the final processed 
signal. The entire process significantly reduces noise in EMG signals while preserving important signal char-
acteristics. This enhancement of data integrity is crucial for a more reliable classification of neuromuscular 
pathologies. Improving signal quality ensures accurate diagnosis and monitoring of neuromuscular conditions 
in the fields of electromyography and clinical neurology. 

Gaussian Copula Diagnosing 

This study aims to implement a Gaussian copula-based denoising method to enhance the quality of EMG 
signals. This approach utilizes sliding windows and rank transformations to fit a Gaussian copula to the data. 
The denoising method employed in this study, grounded in Gaussian copulas, was designed to elevate the 
quality of EMG signals to unprecedented levels. The size of these windows is configurable, with a default 
value of 1000 samples used in this case, allowing for granular and adaptable signal analysis.  

Specialized data structures were initialized, including vectors to store the processed (denoised) signal and 
corresponding indices for valid samples. The window preprocessing algorithm iterates over each segment of 
the EMG signal, applying a comprehensive set of transformations to each window. A crucial step in this pro-
cess is the application of the probability integral transform, where 𝐹𝐹𝑛𝑛 represents the empirical distribution 
function, 𝑥𝑥𝑖𝑖 denotes the window values, and n is the number of samples. This transformation converts the 
original data to a uniform scale between 0 and 1, which is indispensable for the subsequent application of 
copula techniques.51 

𝑢𝑢𝑖𝑖 =  𝐹𝐹𝑛𝑛(𝑥𝑥𝑖𝑖) =  
𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑥𝑥𝑖𝑖)

𝑛𝑛
 (8) 

For copula fitting, we employed the density function of the Gaussian copula, where \Phi represents the corre-
lation parameter, and x, y are derived from 𝑢𝑢1, 𝑢𝑢2, with Φ−1 being the inverse of the standard normal dis-
tribution function. 
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𝑐𝑐(𝑢𝑢1,𝑢𝑢2; ρ) =
1

�1 − ρ2
  exp�−

ρ2(𝑥𝑥2 + 𝑦𝑦2) − 2ρ𝑥𝑥 
2(1 − ρ2) � (9) 

 

In the sample generation and denoising phase, we generated samples from the fitted copula and calculated the 
median. Here, 𝑦𝑦𝑑𝑑 represents the denoised value, and 𝑦𝑦𝑚𝑚 denotes the median of the copula-generated sam-
ples. Subsequently, we applied linear interpolation to adjust the denoised values to the original signal length, 
where (𝑥𝑥𝑖𝑖, 𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) are known points, and (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)is the interpolated point. 

𝑦𝑦𝑖𝑖 = 𝑦𝑦1 + (𝑥𝑥𝑖𝑖 − 𝑥𝑥1)
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

 (10) 

A rank transformation was executed, converting the original data to a uniform scale between 0 and 1. This 
transformation, known as the probability integral transform, is pivotal for the subsequent application of copula 
techniques. Two sets of transformed data were generated: u, representing the original data in the new scale, 
and  𝑢𝑢𝑖𝑖, introducing a one-sample displacement. This technique allows for the capture of temporal depend-
ence structure in the signal. For Gaussian copula fitting, we constructed a two-dimensional Gaussian copula, 
a statistical model that captures the multivariate dependence structure of the data. The copula was fitted to the 
transformed data (u and 𝑢𝑢𝑖𝑖,) using the maximum likelihood method, ensuring an optimal representation of 
the dependence structure in the EMG signal. The maximum likelihood method is a statistical technique used 
to estimate the parameters of a probabilistic model. In the context of the Gaussian copula, this method is 
employed to determine the correlation parameter ρ that best fits the observed data. The likelihood function 
for a bivariate Gaussian copula is defined as: 

𝐿𝐿(ρ| 𝑢𝑢1,𝑢𝑢2) = �𝑐𝑐(𝑢𝑢1𝑖𝑖,𝑢𝑢2𝑖𝑖; ρ)
𝑛𝑛

𝑖𝑖=1

 (11) 

where c is the density function of the Gaussian copula, n is the number of observations, and u_1 and u_2 are 
the transformed observations. The maximum likelihood estimator ρ� is obtained by maximizing the logarithm 
of the function: 

ρ� = 𝑚𝑚𝑟𝑟𝑥𝑥ρ �𝑙𝑙𝑙𝑙𝑙𝑙 (𝑢𝑢1𝑖𝑖,𝑢𝑢2𝑖𝑖; ρ)
𝑛𝑛

𝑖𝑖=1

 (12) 

This equation seeks the value of \rho that produces the maximum value for the sum of the logarithm of the 
Gaussian copula density function c for all observations. This is a common technique in statistics and 
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optimization for finding the value of a parameter that maximizes a likelihood function. The resulting value of 
\rho provides the best estimate of the Gaussian copula's correlation parameter, thus optimally capturing the 
dependence structure in the EMG signal data. 

We utilized the fitted copula to generate 1000 random samples for sample generation and denoising. This 
Monte Carlo simulation process comprehensively explores the signal's possible values, considering the cap-
tured dependence structure. In this case, the Monte Carlo simulation process involved the generation of uni-
form samples (created using two sets of uniform random numbers (𝑢𝑢1, 𝑢𝑢2) in the interval [0,1]) sample trans-
formation where the inverse of the standard normal distribution function Φ−1 is applied to the uniform sam-
ples, application of the dependence structure where the estimated correlation parameter \rho for the Gaussian 
copula was used to introduce dependence between variables, and inverse transformation where the standard 
normal distribution function Φ was applied to obtain the final copula samples43,52,53. 

This process was repeated 1000 times to generate a representative set of samples that reflect the dependence 
structure captured by the Gaussian copula. These simulated samples are then used to estimate the EMG signal's 
denoised value by calculating the generated samples' median. Thus, we calculated the median of these simu-
lated samples, which were used as the denoised value for the current window. This robust technique minimizes 
the influence of outliers and provides a stable estimate of the noise-free signal. We applied an interpolation 
algorithm for post-processing to adjust the denoised values to the original signal length. This step maintains 
the temporal integrity of the processed EMG signal. This process is repeated for each consecutive pair of 
points in the denoised signal, allowing for the reconstruction of the complete signal with the same length as 
the original. Linear interpolation ensures a smooth transition between denoised values, preserving the signal's 
continuity and maintaining its temporal integrity. 

This Gaussian copula-based denoising method offers significant advantages, optimally leveraging the tem-
poral dependence structure between adjacent samples captured precisely by the Gaussian copula. This allows 
for filtering that respects the intrinsic dynamics of the EMG signal. It demonstrates robustness against outliers 
and non-linearities in the signal, common characteristics in biomedical data such as EMG signals. This ro-
bustness translates into more reliable preprocessing that is less susceptible to artifacts. Furthermore, it opti-
mally balances noise reduction and preservation of important EMG signal characteristics. This balance is 
crucial for maintaining the integrity of clinically relevant information contained in the signal. The process is 
applied to each type of EMG signal (healthy, myopathy, and neuropathy), and the results are stored for sub-
sequent use in the classification stage. 

Segmentation and Feature Extraction 

A meticulous feature extraction process was conducted on the EMG signals, employing segments of 100 sam-
ples as the unit of analysis. Two principal characteristics were calculated for each of these segments deemed 
fundamental for signal characterization: mean amplitude and amplitude range54. These features were judi-
ciously selected for their unparalleled capacity to capture crucial information about the morphology and in-
herent variability of EMG signals. The mean amplitude provides a robust measure of the overall intensity of 
muscular activity within each segment, while the amplitude range offers invaluable insights into signal varia-
bility. Together, these features facilitate a concise yet highly informative representation of the most salient 
properties of EMG signals, paramount for classifying neuromuscular diseases. The decision to confine the 
analysis to these two specific features was far from arbitrary; it was predicated on critical model performance 
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and efficacy considerations. Primarily, it aimed to circumvent high computational costs, a crucial factor when 
dealing with voluminous EMG signal data. Furthermore, this judicious selection maintains an optimal equi-
librium between model complexity and generalization capacity, a fundamental aspect in ensuring the robust-
ness and applicability of the system across diverse clinical contexts55. 

This carefully curated feature selection enables capturing essential EMG signal information while mitigating 
the risk of overfitting—a potential pitfall that could arise from including an excessive number of features in 
the model. Overfitting is a particular concern in the analysis of biomedical signals, where inter-individual 
variability and measurement conditions can be significant. By limiting the number of features to the most 
informative ones, we substantially reduce the likelihood of the model excessively adapting to particularities 
of the training set that may not generalize well to novel data. This approach substantially reduces prepro-
cessing time, a critical factor in clinical applications where rapid diagnosis is imperative. Moreover, memory 
requirements are significantly diminished, which is advantageous when working with large volumes of EMG 
signal data, as is common in large-scale clinical studies or continuous monitoring systems. Thus, the feature 
extraction strategy adopted in this study seeks to optimize computational efficiency and model generalization 
capacity without compromising the quality of information extracted from EMG signals. This balanced ap-
proach lays the foundation for an efficient classification system capable of distinguishing with remarkable 
precision between EMG signals of healthy subjects and those with myopathy or neuropathy. 

Classification Model 

For the classification of electromyographic (EMG) signals into the tripartite categories of healthy, myopathic, 
and neuropathic, a comprehensive and rigorous evaluation of diverse preprocessing and classification tech-
niques was meticulously conducted. This study performs an exhaustive assessment of various state-of-the-art 
denoising methodologies, encompassing Empirical Mode Decomposition (EMD), Variational Mode Decom-
position (VMD), Wavelet Thresholding Denoising (WTD), and the innovative Gaussian Copula Denoising 
(GCD). Furthermore, the efficacy of an array of sophisticated classification algorithms was scrutinized, in-
cluding Random Forest (RF), Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), and De-
cision Tree (DT). In pursuing an unparalleled classification paradigm for EMG signals utilizing cutting-edge 
machine learning models, we have developed a holistic approach that spans the entire spectrum from data 
preprocessing to model performance evaluation. The process commences with acquiring EMG data corre-
sponding to three distinct physiological states: healthy subjects, patients afflicted with myopathy, and individ-
uals diagnosed with neuropathy. These signals undergo a meticulous normalization process to ensure optimal 
comparability across diverse samples, establishing a robust foundation for subsequent analysis. 

The preprocessing of EMG signals involves applying advanced noise reduction techniques, including the 
EMD mentioned above, VMD, WTD, and GCD methodologies. The Gaussian Copula Denoising technique 
employs an innovative sliding window approach that effectively mitigates noise while preserving the quintes-
sential characteristics of the EMG signal, thus maintaining its diagnostic integrity. Following the prepro-
cessing phase, we proceed to the critical feature extraction stage. Our model employs a sophisticated segmen-
tation algorithm to partition the signal and compute two pivotal parameters for each segment: mean amplitude 
and amplitude range.  

These features have been judiciously selected for their exceptional discriminatory power in differentiating 
between various EMG signal types, thereby providing a solid foundation for subsequent classification tasks. 
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The classification process leverages a diverse array of machine learning models, including Random Forest 
(RF), Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), and Decision Trees (DT). We 
employ a rigorous data partitioning strategy to ensure a robust and unbiased evaluation, allocating 70% of the 
dataset for model training and reserving 30% for testing. The performance of each model is meticulously 
assessed using a comprehensive confusion matrix and an array of performance metrics, including precision, 
accuracy, and sensitivity, thereby providing a holistic view of the model's capacity to discriminate between 
healthy, myopathic, and neuropathic EMG signals. 

This methodological approach demonstrates a powerful synergy between advanced signal processing tech-
niques and sophisticated machine learning algorithms, establishing a robust framework for EMG signal clas-
sification. Moreover, the model exhibits significant potential for extension to other EMG classification tasks 
or similar biomedical signal analyses, thus providing a solid foundation for future research and applications 
in electromyography and computer-assisted diagnosis. For the employed supervised machine learning classi-
fication methodology, Random Forest, the data preparation process is executed, in which salient features are 
extracted from the EMG signals. The extracted features cover the signal segments' mean amplitude and am-
plitude range. Subsequently, the dataset is split into training and test sets to ensure a robust model evaluation. 
The caret package is leveraged in model training to build and optimize the Random Forest model. This model 
is trained to discriminate EMG signals into three distinct categories: Healthy, Myopathy, and Neuropathy, 
thus facilitating the optimal classification of neuromuscular conditions.  

The trained model is applied to the test set for the prediction and evaluation phase, generating accurate pre-
dictions. The confusion matrix is computed to evaluate the model's performance. This is where performance 
metrics, including precision, recall, F1 score, and accuracy, are calculated to assess the model's effectiveness. 
The Random Forest classification method proves to be exceptionally advantageous due to its inherent charac-
teristics as an ensemble learning technique. It builds multiple decision trees and fuses their predictions, im-
proving overall accuracy and robustness. Furthermore, this method shows remarkable resistance to overfitting 
and demonstrates the unparalleled ability to handle large-scale datasets with high dimensionality. 

Regarding the Convolutional Neural Network (CNN) methodology implemented for classifying EMG signals, 
a model with a multi-layer architecture has been developed. The model structure incorporates a specialized 
input layer that processes two-dimensional EMG features, followed by a strategically designed sequence of 
three one-dimensional convolutional layers with ReLU activation function. This configuration is comple-
mented by three LSTM layers, crucial for the temporal analysis of information, a dropout layer to mitigate the 
risk of overfitting, and a flattening layer, and it culminates with two dense layers that perform the final clas-
sification. The model is optimized using a categorical cross-entropy loss function and the Adam optimizer, 
recognized for their effectiveness in multiclass classification tasks56. The training process extends over 1000 
epochs, with a selected batch size of 32 and a validation ratio of 20%, thus ensuring an optimal balance be-
tween model fitting and its generalization capability. The CNN's performance is evaluated using the metrics 
of precision, accuracy, sensitivity, and F1 score. 

The Multilayer Perceptron (MLP) is used for EMG signal classification. This feed-forward neural network 
consists of multiple layers of interconnected nodes. The process begins with feature extraction, which calcu-
lates the mean amplitude and amplitude range of EMG signal segments. We then split the dataset into training 
and test sets. The MLP model is defined using the 'train' function from the caret package, utilizing the 'nnet' 
method. Key parameters include 5-fold cross-validation, automatic hyperparameter tuning, and a maximum 
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of 1,000 iterations. The model is trained on the extracted features to classify EMG signals into three categories: 
Healthy, Myopathy, and Neuropathy. After training, we evaluate the model's performance using a confusion 
matrix, which provides precision, accuracy, and sensitivity for each class. 

The Decision Tree (DT) classification method used is a supervised learning algorithm that creates a model 
resembling a tree structure. It recursively splits the dataset based on the most significant attributes, making 
decision and leaf nodes. The process begins by selecting the best feature to split the data, creating branches 
for each possible value of that feature. This continues until a stopping criterion is met, such as a minimum 
number of samples in a leaf or a maximum tree depth. The report function is used to create the initial tree 
model in this implementation. The method= "class" parameter specifies that it's a classification tree. The con-
trol parameters cp (complexity parameter) and minsplit (minimum number of observations in a node for a 
split) are used to control the tree's growth and prevent overfitting. After building the initial tree, pruning is 
performed using the optimal complexity parameter (cp-optimal) to reduce the tree's complexity and improve 
its generalization ability. The pruned tree is then used to make predictions on the test set, and its performance 
is evaluated using a confusion matrix and various metrics such as accuracy, precision, recall, and F1 score. 

After an extensive comparative analysis, we have judiciously selected the Random Forest model for the final 
classification task, capitalizing on its robust and versatile machine-learning capabilities. This selection is pred-
icated on Random Forest's exceptional proficiency in handling high-dimensional data and its remarkable re-
silience to overfitting—attributes of paramount importance when analyzing intricate biomedical signals such 
as EMGs. In preparing the data for model training and evaluation, we have employed a data partitioning strat-
egy, adhering to best practices in the field of machine learning. Specifically, the dataset underwent a meticu-
lous segmentation process, resulting in two distinct subsets: a comprehensive training set encompassing 70% 
of the total data and a rigorous testing set comprising the remaining 30%. This strategic bifurcation ensures 
an optimal equilibrium between the volume of data available for model training and the retention of a sub-
stantial portion for evaluating its performance on previously unseen data. 

The model was trained using features extracted from EMG signal segments. We chose mean amplitude and 
amplitude range to capture the signals' most significant and distinctive information. Our Random Forest model 
recognizes intricate patterns in these features, effectively differentiating between three categories of EMG 
signals. We optimized the Random Forest model by evaluating various numbers of decision trees and segment 
sizes for feature extraction. The ideal configuration uses 500 trees, maximizing classification robustness and 
accuracy. For feature extraction, we found that a segment size of 100 samples effectively captures the mean 
amplitude and range of the EMG signals. We also implemented Gaussian copula-based denoising with a win-
dow of 1000 samples and an overlap of 7, significantly improving signal quality. This combination of param-
eters and techniques establishes a robust framework for classifying EMG signals into three categories: Healthy, 
Myopathy, and Neuropathy. Our approach has significant potential for application in other EMG classification 
tasks and related biomedical signal analysis. 

The efficacy of our algorithm in detecting neuromuscular diseases from EMG signals was rigorously evaluated 
using the esteemed Physionet database 45. Our comprehensive research methodology incorporates advanced 
statistical techniques and artificial intelligence approaches, which are instrumental in assessing critical per-
formance metrics such as recall, accuracy, precision, and F1-score, as shown in Table 3. The data assessment 
framework employs a sophisticated classification scheme: True Positive (TP) for correctly classified signals 
of the class of interest (CI), True Negative (TN) for accurately classified signals not in the class of interest 
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(NCI), False Positive (FP) for NCI signals erroneously classified as CI, and False Negative (FN) for CI signals 
incorrectly classified as NCI. Precision, Recall, and F1-score metrics are of paramount importance, serving as 
robust indicators of the model's capacity to accurately detect the fraction of NCI and CI signals, respectively. 
The F1-score, calculated as the harmonic mean of Precision and Recall, provides a balanced measure of the 
model's performance, which is particularly useful when dealing with imbalanced datasets. This comprehensive 
set of metrics thoroughly evaluates the algorithm's diagnostic capabilities. 

Performance Metrics Equation 

Recall ρ =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
 

Accuracy δ =
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑇𝑇
 

Precision τ =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

F-Score ϱ =
2 × 𝑇𝑇𝑟𝑟𝑒𝑒𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑛𝑛 × 𝑅𝑅𝑒𝑒𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙
𝑅𝑅𝑒𝑒𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙 + 𝑇𝑇𝑟𝑟𝑒𝑒𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑛𝑛

 
1 These metrics are essential for evaluating the performance of the classification model. 
Table 1. Evaluation Metrics. 

These metrics are critical for evaluating the system's performance as they apply to all classes within the re-
cording, although they do not directly impact the clustering process parameters. Additional parameters are 
integrated with the primary metrics to ensure accurate performance even with a relatively large number of 
clusters and avoid the pitfalls associated with maintaining a high number of clusters. In this regard, overall 
accuracy is used as the primary measurement parameter. Various groupings were tested, and the proposed 
approach yielded the best results. This methodology aligns with those adopted in previous research by 
Mousavi S.20 and Prasad C.21, where similar metrics were utilized to gauge system effectiveness. This thor-
ough analysis aims to comprehensively understand the algorithm's capability to detect neuromuscular diseases, 
thereby offering valuable contributions to medical diagnostics. 

 
 
 

The comprehensive analysis of electromyographic (EMG) signals, employing our innovative Gaussian cop-
ula-based denoising methodology in conjunction with meticulous feature extraction and Random Forest clas-
sification, has yielded exceptionally robust and clinically significant outcomes. Figures 2, 3, and 4 juxtapose 
the original healthy, myopathy, and neuropathy EMG signal with its Gaussian Copula Denoised counterpart, 
elucidating the technique's prowess in preserving essential signal characteristics while attenuating extraneous 
noise. The azure line delineates the original EMG signal, replete with high-frequency perturbations, while the 
crimson line represents the denoised signal, maintaining its fundamental morphology and salient features, 
albeit with more refined contours and diminished noise.  

The Gaussian Copula Denoising methodology remarkably effectively mitigates high-frequency disturbances 
while meticulously preserving the signal's intrinsic structure, amplitude modulations, and temporal patterns—
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crucial for precise diagnosis. This visual corroboration lends credence to our quantitative findings, unequivo-
cally demonstrating the method's effectiveness in enhancing signal clarity, thus facilitating superior classifi-
cation of neuromuscular pathologies. The feature extraction method, which astutely focuses on mean ampli-
tude and amplitude range derived from 100-sample segments, proved instrumental in achieving unprecedented 
classification accuracy. The results showed that these metrics were crucial for evaluating the system's perfor-
mance, as they were applied to all classes within the recording, although they did not directly impact the 
parameters of the clustering process. Various groupings were tested, and the proposed approach yielded the 
best results. Thus, additional parameters were integrated with the main metrics to avoid problems associated 
with maintaining a high number of groups, ensuring accurate performance even with a relatively large number 
of groups. In this regard, overall accuracy was used as the primary measurement parameter. 

Our findings unequivocally validate the efficacy of our approach and provide profound insights into the dif-
ferentiation of neuromuscular pathologies (Table 2). The Random Forest model, rigorously trained on 70% 
of the data and meticulously tested on the remaining 30%, exhibited exceptional discriminatory power, yield-
ing the following exemplary performance metrics. In a comparative analysis of various EMG signal denoising 
techniques, we observe that the Gaussian Copula Denoising (GCD) method outperforms alternative ap-
proaches. GCD achieves a remarkably high overall accuracy of 99.5% and consistently maintains superlative 
precision and sensitivity across all classes (exceeding 99%). In contrast, Wavelet Thresholding Denoising 
(WTD) emerges as the second-best performer with a commendable 76% accuracy. 

 
Figure 2. Healthy EMG signal with Gaussian Copula Denoised vs original. 
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Figure 3. Myopathy EMG signal with Gaussian Copula Denoised vs original. 

 

 
Figure 4. Neuropathy EMG signal with Gaussian Copula Denoised vs original. 

The original signal and Empirical Mode Decomposition (EMD) exhibit comparable performance (approxi-
mately 75% and 74% accuracy, respectively), while Variational Mode Decomposition (VMD) demonstrates 
the least favorable performance (66.2% accuracy). These compelling results emphatically underscore the su-
perior efficacy of the Gaussian Copula method in preserving critical signal characteristics while effectively 
mitigating noise, culminating in significantly enhanced classification accuracy for neuromuscular diseases. 
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The exceptional performance metrics unequivocally demonstrate the model's unparalleled effectiveness in 
distinguishing between healthy, myopathic, and neuropathic EMG signals. The consistently high precision 
and recall values across all classes are incontrovertible evidence of the model's remarkable ability to accurately 
identify each class and its unparalleled effectiveness in capturing all instances of each class with extraordinary 
fidelity. 

Table 2 comprehensively compares various classification models (left column) and denoising techniques (top 
row). The performance metrics (Accuracy, Precision, Recall, and F1-Score) are shown for each combination. 
Bold values indicate the best performance for each model across different denoising methods. The results 
demonstrate that the Gaussian Copula Denoising (GCD) technique consistently yields superior performance 
across all models and metrics. The execution time column shows approximate running times for each model 

Model Metric Original EMD VMD WTD GCD Execution 
Time 

RF 

Accuracy 75,51% 73,99% 66,16% 72,98% 99,48% 

14,72s Precision 75,26% 74,68% 66,48% 72,88% 99,49% 
Recall 75,50% 73,99% 66,16% 72,98% 99,48% 

F-Score 75,33% 74,05% 66,28% 72,91% 99,48% 

CNN 

Accuracy 74,31% 71,54% 74,06% 72,80% 89,18% 

230,33s Precision 74,31% 71,58% 74,12% 72,86% 89,31% 
Recall 74,15% 71,89% 74,24% 72,45% 89,18% 

F-Score 73,60% 71,19% 73,95% 72,24% 89,15% 

MLP 

Accuracy 80,56% 77,02% 71,46% 75,00% 87,08% 

21,28s Precision 80,38% 77,10% 71,28% 74,79% 87,01% 
Recall 80,56% 77,02% 71,46% 75,00% 87,08% 

F-Score 80,29% 76,87% 71,31% 74,79% 86,87% 

DT 

Accuracy 78,28% 76,77% 71,72% 74,24% 94,92% 

13,36s Precision 78,42% 76,65% 71,77% 75,60% 94,88% 
Recall 78,28% 76,77% 71,72% 74,24% 94,88% 

F-Score 78,34% 76,41% 71,70% 73,90% 94,88% 
2 EMD: Empirical Mode Decomposition, VMD: Variational Mode Decomposition, WTD: Wavelet Transform Denoising, GCD: 
Gaussian Copula Denoising, RF: Random Forest, CNN: Convolutional Neural Networks, MLP: Multilayer perceptron, DT: Deci-
sion Tree. 
Table 2. Performance Metrics and Execution Time for the evaluated Classification Models and Denoising Techniques. 

To contextualize our findings, we juxtaposed our methodology with cutting-edge approaches in EMG signal 
classification for neuromuscular disease diagnosis. The comparative analysis unequivocally demonstrates the 
superior efficacy of our method in terms of overall accuracy. These results underscore the synergistic effect 
of our innovative signal preprocessing pipeline and machine learning approach, establishing a new paradigm 
in the automated analysis of EMG signals for neuromuscular disease classification. The robustness and preci-
sion of our method position it as an invaluable tool for both clinical application and further research in the 
domain of neuromuscular diagnostics. 

Table 2 presents a comprehensive performance analysis of four classification models (Random Forest, CNN, 
MLP, and Decision Tree) applied to various noise removal techniques (Original, EMD, VMD, WTD, and 
GCD) on an electromyography (EMG) dataset. The results highlight the superiority of the Gaussian Copula 
Denoising (GCD) method, which achieved an impressive 99.48% accuracy when combined with the Random 
Forest classification model. In contrast, the VMD method applied to Random Forest yielded the lowest 
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performance with 66.16% accuracy. Execution times varied significantly, with CNN being the most compu-
tationally intensive at 230.33s, while Decision Tree proved most efficient at 13.36s. Random Forest demon-
strated a balanced performance with an intermediate execution time of 14.72s. 

The model's performance was evaluated using a comprehensive set of metrics, including overall accuracy, 
class-specific precision, and class-specific sensitivity (recall). The results were exceptional, demonstrating an 
overall accuracy of 99%. This remarkably high precision underscores the model's superior performance in 
classifying neuromuscular diseases based on processed EMG signals, showcasing an extraordinary ability to 
differentiate between healthy subjects and those with myopathy or neuropathy. This breakthrough has signif-
icant implications for clinical diagnosis and research in neuromuscular disorders. 

It is important to note that this unprecedented accuracy is not solely attributable to the Random Forest classi-
fication algorithm but also validates the effectiveness of the Gaussian copula-based denoising method and the 
meticulous feature selection process. The synergy between these sophisticated signal preprocessing techniques 
and state-of-the-art machine learning approaches has resulted in an exact and reliable classification system for 
analyzing EMG signals in the context of neuromuscular diseases. 

 

 

This study demonstrates the superiority of the GCD method across all evaluated models. The impact of GCD 
varies between models, with Random Forest showing significant improvement, while MLP presents more 
moderate progress. This variability underscores the importance of carefully selecting the combination of 
model and noise removal technique for each specific application. 

Execution times are crucial in optimizing the balance between accuracy and processing speed in real-world 
applications. In this context, Random Forest is an attractive option, combining high accuracy with computa-
tional efficiency. These findings show that the choice of noise removal method and classification model pro-
foundly impacts accuracy and computational efficiency, providing invaluable information for professionals 
seeking to optimize classification systems in various fields, from medical diagnosis to financial analysis. 

The strategic implementation of these techniques promises to improve the accuracy of results and optimize 
computational resources, leading to significant advances in data-driven decision-making. The confusion ma-
trix from applying the GCD method with Random Forest (Figure 5) shows awe-inspiring results, nearly per-
fect accuracy across all categories. For the "Healthy" class, the model correctly classified 128 out of 129 cases 
(99.22% accuracy). The "Myopathy" category showed equally outstanding performance with 128 correct pre-
dictions out of 129 possible (99.22% accuracy). Even more impressive, in the "Neuropathy" class, the model 
achieved perfect 100% accuracy, correctly classifying all 129 cases. These results underscore the effectiveness 
of combining GCD and Random Forest in analyzing electromyography data. 

 
DISCUSSION 
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Figure 5. Decision Matrix using Gaussian Copula Denoising and Random Forest Classification. 

The three diagnostic classes' ROC curves (Figure 6) reinforce these findings. For the Healthy class, the ROC 
curve approaches the upper left corner of the graph, with an area under the curve (AUC) of approximately 
0.995, indicating an excellent ability to identify healthy cases correctly. The Myopathy class shows even more 
impressive performance, with an AUC of 0.998, suggesting an almost perfect ability to discriminate between 
myopathy and non-myopathy cases. The model achieves perfection for neuropathy with an AUC of 1.0, trans-
lated into an ROC curve that forms a perfect right angle, demonstrating the model's ability to classify all 
neuropathy cases without error. These ROC curves and the high reported accuracy values demonstrate the 
exceptional robustness and reliability of the Random Forest-based classification model combined with the 
GCD technique. The model's ability to distinguish between the three classes with such precision suggests its 
potential as a highly reliable diagnostic tool in clinical practice, especially in analyzing electromyography 
signals for detecting neuromuscular disorders. 
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Figure 6. ROC Curves for each class using Gaussian Copula Denoising and Random Forest Classification. 

This study comprehensively evaluated and compared noise removal techniques and classification methodolo-
gies for diagnosing and treating neuromuscular diseases using electromyographic (EMG) signals. Our inno-
vative methods, which combine Gaussian copula-based denoising with Random Forest classification, consist-
ently outperformed alternative approaches, achieving an unprecedented overall accuracy of 99%. This result 
not only eclipses previously documented approaches but also aligns with the high accuracy achieved by Abdul 
Wadud et al.11, who reported 99% accuracy using different features and classifiers. 

The exceptional performance of our methodology can be attributed to three key factors: effective noise atten-
uation, robust feature extraction, and an optimal classification algorithm. Our Gaussian Copula Denoising 
(GCD) technique demonstrated remarkable efficacy in preserving critical signal features while mitigating ex-
traneous noise, outperforming alternative methodologies such as Empirical Mode Decomposition (EMD), 
Variational Mode Decomposition (VMD), and Wavelet Thresholding Denoising (WTD). This aligns with the 
findings of Kiran PU et al.34, who achieved improved classification performance using features derived from 
the tunable Q-factor wavelet transform (TQWT). 

Our feature extraction process, which calculates the mean amplitude and amplitude range of 100-sample seg-
ments, has skillfully captured the essential properties of the EMG signal. This approach facilitates precise 
differentiation between healthy, myopathic, and neuropathic conditions. The Random Forest model exhibited 
exceptional proficiency in handling the complexities of EMG signal data, consistently achieving high accuracy 
and sensitivity across all classes (exceeding 99%). This performance surpasses that reported by Pranav 
Madhav Kuber et al.38, who achieved 92% accuracy using Random Forest for fatigue detection. 

. 
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Author Denoising Method Classification Method Accuracy Year 
Iqram Hussain et al.39 SNR Machine Learning 0.92 2024 
Pranav Kuber et al.38 Fourier Transform Random Forest 0.92 2024 
Xiaoyuan Luo et al.37 Butterworth Filter Deep Learning 0.87 2024 
M.R. Tannemaat et al.36 Motor Unit Potentials Machine Learning 0.85 2023 
Soongyu Kang et al.35 Fourier Transform BNN 0.95 2023 
Abdul Wadud et al.11 MAD Support Vector Machine 0.99 2022 
Kiran PU et al.34 Wavelet Transform K-Nearest Neighbors 0.95 2018 

3 This table presents the accuracy of various methods for preprocessing and classifying EMG signals. 
Table 3. Processing and classification methods for EMG signal analysis. 

The implications of these findings are profound and far-reaching for clinical practice and research in neuro-
muscular diagnostics. The exceptional overall accuracy of 99% predicts a significant reduction in misdiagno-
ses, potentially catalyzing more timely and appropriate therapeutic interventions. This improvement in diag-
nostic accuracy addresses the clinical implementation challenges pointed out by Fraser et al.40, particularly in 
reducing biases and overfitting issues. The computational efficiency of our approach makes it eminently suit-
able for real-time analysis in clinical settings, streamlining the diagnostic process. 

Our methodological approach demonstrates a powerful synergy between advanced signal processing tech-
niques and sophisticated machine learning algorithms. The model's potential extends beyond EMG classifica-
tion to other biomedical signal analyses, providing a solid foundation for future research and applications in 
electromyography and computer-assisted diagnosis. The robustness of our method in discerning between var-
ious neuromuscular conditions opens new avenues for investigating subtle electrophysiological distinctions 
among various neuromuscular pathologies, advancing our understanding of these complex disorders and po-
tentially improving patient outcomes. 

This study represents a significant advancement in the automated analysis of EMG signals for classifying 
neuromuscular diseases. Our approach builds upon and surpasses previous work, such as that of M.R. Tan-
nemaat et al.36, who achieved 85.6% accuracy at the patient level using machine learning for EMG classifica-
tion. As we continue to refine and validate this approach, it can revolutionize the diagnosis and management 
of neuromuscular disorders, ultimately improving patient outcomes and expanding our understanding of these 
intricate conditions. 

 

 

In conclusion, our study on EMG signal analysis for neuromuscular disease classification has yielded ground-
breaking results. An evaluation of diverse noise removal techniques and classification methodologies has de-
veloped a pioneering approach that synergistically combines Gaussian copula-based denoising with Random 
Forest classification. This innovative pairing has consistently outperformed alternative methods, achieving 
over 99% accuracy across all evaluated criteria, thereby establishing a new benchmark for diagnostic precision 
in neuromuscular disorders. Our holistic methodology encompasses the spectrum of signal processing and 
machine learning, from data acquisition and preprocessing to feature extraction and classification. The process 
begins with collecting and normalizing EMG signals from healthy subjects, myopathy patients, and neuropa-
thy patients.  

 
CONCLUSIONS 
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Denoising EMG signal techniques are then applied, with the Gaussian Copula Denoising method proving 
particularly effective in preserving critical signal characteristics while mitigating noise. This innovative tech-
nique employs a sliding window approach that maintains the diagnostic integrity of the EMG signal. The 
proposed segmentation approach extracts key features - mean amplitude and amplitude range - which provide 
a robust foundation for classification, selected for their exceptional discriminatory power in differentiating 
between various EMG signal types. The classification phase leverages currently popular machine learning 
models, including Random Forest, Convolutional Neural Networks, Multilayer Perceptron, and Decision 
Trees. After comparative analysis, the Random Forest model was selected for its exceptional ability to handle 
high-dimensional data and resist overfitting. The data partitioning strategy, allocating 70% for training and 
30% for testing, ensures an unbiased evaluation of the model's performance. The model employing advanced 
statistical techniques and artificial intelligence was evaluated using performance metrics such as Recall, Ac-
curacy, Precision, and F1-score. 

The implications of this research are far-reaching. Our low-cost computational approach is efficient and well-
suited for real-time analysis in clinical settings. It significantly reduces misdiagnoses and enables more timely 
and effective interventions. From a research perspective, it opens new avenues for investigating subtle elec-
trophysiological distinctions among diverse biomedical signal pathologies. The model shows significant po-
tential for extension to other EMG classifications. For future research, we recommend collecting data directly, 
allowing for greater control and a larger dataset for testing. This approach would enable the identification of 
potential variations based on age or sex. It would also help determine whether the proposed methodology 
differs in effectiveness between moderate and severe disease cases. Such comprehensive data collection and 
analysis would further validate and refine the method. This could potentially lead to more personalized and 
effective diagnostic and treatment strategies. 

Author Contributions: A Conceptualization, LC; Data curation, EC; Formal analysis, LC and NSP; Investi-
gation, EC, LC, and NSP; Methodology, EC and LC; Project administration, EC; Software, EC and NSP; 
Supervision, LC and NSP; Validation, LC and NSP; Writing – original draft, EC; Writing – review and editing, 
LC and NSP. 
Funding: This manuscript did not receive external funding. 
Data Availability Statement: Data are contained within the article. 
Conflicts of Interest: The authors declare no conflict of interest. 

 

1. Kok, C. L., Ho, C. K., Tan, F. K. & Koh, Y. Y. Machine Learning-Based Feature Extraction and Clas-
sification of EMG Signals for Intuitive Prosthetic Control. Applied Sciences 2024, Vol. 14, Page 5784
14, 5784 (2024).

2. Carey, I. M. et al. Prevalence of co-morbidity and history of recent infection in patients with neuro-
muscular disease: A cross-sectional analysis of United Kingdom primary care data. PLoS One 18,
e0282513 (2023).

3. Castiglioni, C., Jofré, J. & Suárez, B. Neuromuscular disorders. Epidemiology an health policies in
Chile. Revista Medica Clinica Las Condes vol. 29 594–598 Preprint at
https://doi.org/10.1016/j.rmclc.2018.09.003 (2018).

REFERENCES 

https://clinicalbiotec.com/


Bionatura Journal  2024, 10.70099/BJ/2024.01.04.22 

25 

4. de Jonge, S., Potters, W. V & Verhamme, C. Artificial intelligence for automatic classification of needle
EMG signals: A scoping review. Clinical Neurophysiology 159, 41–55 (2024).

5. Lal, B., Gravina, R., Spagnolo, F. & Corsonello, P. Compressed Sensing Approach for Physiological
Signals: A Review. IEEE Sens J 23, 5513–5534 (2023).

6. Cho, G. Y., Lee, S. J. & Lee, T. R. Efficient Real-Time Lossless EMG Data Transmission to Monitor
Pre-Term Delivery in a Medical Information System. Applied Sciences 2017, Vol. 7, Page 366 7, 366
(2017).

7. Yin, G., Sun, S., Yu, D., Li, D. & Zhang, K. A Multimodal Framework for Large-Scale Emotion Recog-
nition by Fusing Music and Electrodermal Activity Signals. ACM Transactions on Multimedia Com-
puting, Communications, and Applications (TOMM) 18, (2022).

8. Chuiko, G., Dvornik, O., Darnapuk, Y. & Baganov, Y. DEVISING A NEW FILTRATION METHOD
AND PROOF OF SELF-SIMILARITY OF ELECTROMYOGRAMS. Eastern-European Journal of
Enterprise Technologies 4, 15–22 (2021).

9. Chan, B., Saad, I., Bolong, N. & Siew, K. E. A Review of Surface EMG in Clinical Rehabilitation Care
Systems Design. 19th IEEE Student Conference on Research and Development: Sustainable Engineer-
ing and Technology towards Industry Revolution, SCOReD 2021 371–376 (2021)
doi:10.1109/SCORED53546.2021.9652736.

10. Rozaqi, L., Nugroho, A., Sanjaya, K. H. & Simbolon, A. I. Design of Analog and Digital Filter of
Electromyography. Proceeding - 2019 International Conference on Sustainable Energy Engineering
and Application: Innovative Technology Toward Energy Resilience, ICSEEA 2019 186–192 (2019)
doi:10.1109/ICSEEA47812.2019.8938645.

11. Wadud, A. & Showrov, M. I. H. Emg signal classification with effective features for diagnosis. in
Advances in Intelligent Systems and Computing vol. 1200 AISC 629–637 (Springer, 2021).

12. Wang, D., Qiu, Y., Beyerle, E., Huang, X. & Tiwary, P. An Information Bottleneck Approach for Mar-
kov Model Construction. (2024).

13. Boyer, M., Bouyer, L., Roy, J. S. & Campeau-Lecours, A. Reducing Noise, Artifacts and Interference
in Single-Channel EMG Signals: A Review. Sensors 2023, Vol. 23, Page 2927 23, 2927 (2023).

14. Xu, L. et al. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference
from Trunk Electromyography. Sensors 2020, Vol. 20, Page 4890 20, 4890 (2020).

15. Vijayvargiya, A., Gupta, V., Kumar, R., Dey, N. & Tavares, J. M. R. S. A Hybrid WD-EEMD sEMG
Feature Extraction Technique for Lower Limb Activity Recognition. IEEE Sens J 21, 20431–20439
(2021).

16. Bilgin, B., Gürsoy, M. İ. & Alkan, A. Biometric Personal Classification with Deep Learning Using
EMG Signals. Bilge International Journal of Science and Technology Research 7, 156–161 (2023).

17. Nagineni, S., Taran, S. & Polat, K. Variational mode decomposition based entropy features for classi-
fication of myopathy, neuropathy, and normal EMG signals. Data Analytics for Intelligent Systems 4-
1-4–12 (2024) doi:10.1088/978-0-7503-5417-2CH4.

18. Ma, S., Lv, B., Lin, C., Sheng, X. & Zhu, X. EMG Signal Filtering Based on Variational Mode De-
composition and Sub-Band Thresholding. IEEE J Biomed Health Inform 25, 47–58 (2021).

19. Liu, C. & Zhang, C. Remove Artifacts from a Single-Channel EEG Based on VMD and SOBI. Sensors
2022, Vol. 22, Page 6698 22, 6698 (2022).

20. sein Mousavi, S. A., Hasan, M. A., Abdulrazzaq, M. H. & Naghavizadeh, M. Diagnosis of myopathy,
neuropathy using electromyogram signal and Wavelet coefficients. 4th International Symposium on

https://clinicalbiotec.com/


Bionatura Journal  2024, 10.70099/BJ/2024.01.04.22 

26 

Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 - Proceedings (2020) 
doi:10.1109/ISMSIT50672.2020.9254551. 

21. Prasad, C. & Kullayamma, I. Features Extraction and Analysis of Electro Myogram Signals Using Time,
Frequency, and Wavelet Transform Methods. 1–13 (2023) doi:10.1007/978-981-99-1431-9_1.

22. Elouaham, S. et al. Filtering and analyzing normal and abnormal electromyogram signals. Indonesian
Journal of Electrical Engineering and Computer Science 20, 176–184 (2020).

23. Dubey, R., Kumar, M., Upadhyay, A. & Pachori, R. B. Automated diagnosis of muscle diseases from
EMG signals using empirical mode decomposition based method. Biomed Signal Process Control 71,
(2022).

24. Guo, J. et al. An Ultrahigh Voltage Shunt Reactor Acoustic Signal Separation Method Based on Mask-
ing Beamforming and Underdetermined Blind Source Separation. IEEE Trans Instrum Meas 72, (2023).

25. Buongiorno, D. et al. Deep learning for processing electromyographic signals: A taxonomy-based sur-
vey. Neurocomputing 452, 549–565 (2021).

26. Gul, J. Z. et al. Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and
Machine Learning. Sensors 2024, Vol. 24, Page 5426 24, 5426 (2024).

27. AchmamadAbdelouahad et al. ML-Based Identification of Neuromuscular Disorder Using EMG Sig-
nals for Emotional Health Application. ACM Trans Internet Technol (2023) doi:10.1145/3637213.

28. Amin, M. et al. Fuzzy performance estimation of real-world driver's stress recognition models based
on physiological signals and deep learning approach. J Ambient Intell Humaniz Comput 1–16 (2024)
doi:10.1007/S12652-024-04834-7/METRICS.

29. Lee, J., Kim, Y. & Kim, E. Data-Driven Stroke Classification Utilizing Electromyographic Muscle
Features and Machine Learning Techniques. Applied Sciences 2024, Vol. 14, Page 8430 14, 8430
(2024).

30. Piñeros-Fernández, M. C. Artificial Intelligence Applications in the Diagnosis of Neuromuscular Dis-
eases: A Narrative Review. Cureus 15, (2023).

31. Khalid, M. U., Khawaja, B. A. & Nauman, M. M. Efficient Blind Source Separation Method for fMRI
Using Autoencoder and Spatiotemporal Sparsity Constraints. IEEE Access 11, 50364–50381 (2023).

32. Fu, Z. et al. Emotion recognition based on multi-modal physiological signals and transfer learning.
Front Neurosci 16, 1000716 (2022).

33. Zheng, Y., Zheng, G., Zhang, H., Zhao, B. & Sun, P. Mapping Method of Human Arm Motion Based
on Surface Electromyography Signals. Sensors 2024, Vol. 24, Page 2827 24, 2827 (2024).

34. Kiran, U. & Bajaj, V. TQWT Based Features for Classification of ALS and Healthy EMG Signals.
(2018) doi:10.21767/2349-3917.100019.

35. Kang, S. et al. sEMG-Based Hand Gesture Recognition Using Binarized Neural Network. Sensors 2023,
Vol. 23, Page 1436 23, 1436 (2023).

36. Tannemaat, M. R. et al. Distinguishing normal, neuropathic and myopathic EMG with an automated
machine learning approach. Clin Neurophysiol 146, 49–54 (2023).

37. Luo, X., Huang, W., Wang, Z., Li, Y. & Duan, X. InRes-ACNet: Gesture Recognition Model of Multi-
Scale Attention Mechanisms Based on Surface Electromyography Signals. Applied Sciences 2024, Vol.
14, Page 3237 14, 3237 (2024).

38. Kuber, P. M., Godbole, H. & Rashedi, E. Detecting Fatigue during Exoskeleton-Assisted Trunk Flexion
Tasks: A Machine Learning Approach. Applied Sciences 2024, Vol. 14, Page 3563 14, 3563 (2024).

https://clinicalbiotec.com/


Bionatura Journal  2024, 10.70099/BJ/2024.01.04.22                                   
 

 

 

 
27 

39. Hussain, I. & Jany, R. Interpreting Stroke-Impaired Electromyography Patterns through Explainable 
Artificial Intelligence. Sensors 24, 1392 (2024). 

40. Fraser, G. D., Chan, A. D. C., Green, J. R. & Macisaac, D. T. Automated biosignal quality analysis for 
electromyography using a one-class support vector machine. IEEE Trans Instrum Meas 63, 2919–2930 
(2014). 

41. Ma, G., Zhang, J., Liu, J., Wang, L. & Yu, Y. A Multi-Parameter Fusion Method for Cuffless Contin-
uous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram. Microm-
achines (Basel) 14, (2023). 

42. Papafragkakis, A. Z., Kouroriorgas, C. I. & Panagopoulos, A. D. Performance of Micro-Scale Trans-
mission & Reception Diversity Schemes in High Throughput Satellite Communication Networks. Elec-
tronics 2021, Vol. 10, Page 2073 10, 2073 (2021). 

43. Bokal, Z. Advanced Copula-based Methods for Nonparametric Detection and Characterization of 
Wideband Radar Signals. Electronics and Control Systems 3, 59–66 (2024). 

44. Ahmed, *, Al, M.-B., Das, S. & Khosravi, H. Binary Gaussian Copula Synthesis: A Novel Data Aug-
mentation Technique to Advance ML-based Clinical Decision Support Systems for Early Prediction of 
Dialysis Among CKD Patients. 

45. Examples of Electromyograms v1.0.0. Preprint at https://physionet.org/content/emgdb/1.0.0/. 
46. Tao, S. et al. Deep-Learning-Based Amplitude Variation with Angle Inversion with Multi-Input Neural 

Networks. Processes 2024, Vol. 12, Page 2259 12, 2259 (2024). 
47. Boro, N. J., Shankar, K. & Hazarika, J. A comparative analysis of EMG signals of the Healthy, Myo-

pathy, and Low Back Pain Patients. 2022 2nd International Conference on Emerging Frontiers in Elec-
trical and Electronic Technologies, ICEFEET 2022 (2022) 
doi:10.1109/ICEFEET51821.2022.9847832. 

48. Elouaham, S. et al. Combination time-frequency and empirical wavelet transform methods for removal 
of composite noise in EMG signals. TELKOMNIKA (Telecommunication Computing Electronics and 
Control) 21, 1373–1381 (2023). 

49. Varshney, Y. V., Chandel, G., Upadhyaya, P., Farooq, O. & Khan, Y. U. Early onset/offset detection 
of epileptic seizure using M-band wavelet decomposition. Int J Biomed Eng Technol 40, 205–223 
(2022). 

50. Farid, N. Machine Learning in Neuromuscular Disease Classification. Handbook of Metrology and 
Applications 1–26 (2022) doi:10.1007/978-981-19-1550-5_56-1. 

51. Yan, Y. et al. Enhancing Basin-scale Hydrological Time Series Processing and Modeling with Masked 
Pre-Trained Encoder. Preprint at https://doi.org/10.22541/au.172417537.74282767/v1 (2024). 

52. Liengaard, B. D. et al. Dealing with regression models' endogeneity by means of an adjusted estimator 
for the Gaussian copula approach. J Acad Mark Sci (2024) doi:10.1007/s11747-024-01055-4. 

53. Ahmed, *, Al, M.-B., Das, S. & Khosravi, H. Binary Gaussian Copula Synthesis: A Novel Data Aug-
mentation Technique to Advance ML-Based Clinical Decision Support Systems for Early Prediction of 
Dialysis Among CKD Patients. 

54. Tao, S. et al. Deep-Learning-Based Amplitude Variation with Angle Inversion with Multi-Input Neural 
Networks. Processes 2024, Vol. 12, Page 2259 12, 2259 (2024). 

55. Du, H.-P., Lu, Y.-X., Ai, Y. & Ling, Z.-H. BiVocoder: A Bidirectional Neural Vocoder Integrating 
Feature Extraction and Waveform Generation. (2024). 

https://clinicalbiotec.com/


Bionatura Journal  2024, 10.70099/BJ/2024.01.04.22 

28 

56. Kulkarni, P. & Madathil, D. Fully automatic segmentation of LV from echocardiography images and
calculation of ejection fraction using deep learning. Int J Biomed Eng Technol 40, 241–261 (2022).

Received: October 28, 2024   / Accepted: November 20, 2024 / Published: December 15, 2024

Citation: Cepeda E, Sánchez-Pozo N, Chamorro-Hernández L. Enhanced Predictive Modeling for Neuro-
muscular Disease Classification: A Comparative Assessment Using Gaussian Copula Denoising on Electro-
myographic Data. Bionatura journal. 2024;1(2):22. doi: 10.70099/BJ/2024.01.02.22 

Additional information Correspondence should be addressed to educepedam@gmail.com 
Peer review information. Bionatura thanks anonymous reviewer(s) for their contribution to the peer review 
of this work using https://reviewerlocator.webofscience.com/  
ISSN.3020-7886 
All articles published by Bionatura Journal are made freely and permanently accessible online immediately 
upon publication, without subscription charges or registration barriers.  
Publisher's Note: Bionatura Journal stays neutral concerning jurisdictional claims in published maps and 
institutional affiliations.  
Copyright: © 2024 by the authors. They were submitted for possible open-access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/li-
censes/by/4.0/). 

https://clinicalbiotec.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Data acquisition
	Signal preprocessing
	Empirical Mode Decomposition
	Variational Mode Decomposition
	Wavelet Thresholding Denoising
	Gaussian Copula Diagnosing

	Segmentation and Feature Extraction
	Classification Model



