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Electrospinning is a tunable technique for fabricating nanofibrous materials with exceptional properties for 
biosensing. The high surface area, interconnected porosity, and loading capacity of these nanofibers create an 
ideal microenvironment for enhancing sensor performance. This article focuses on composite platforms that 
synergistically combine the biocompatibility of chitosan with the improved electrical properties of carbon-
based materials to develop highly sensitive and selective biosensors. Despite promising results, significant 
challenges hinder their commercial translation, including long-term enzyme stability, matrix interference from 
complex samples, fabrication protocols, and performance validation in real-world applications. Accordingly, 
this work critically assesses recent advancements in electrospun chitosan-carbon electrochemical enzyme 
biosensors, analyzes key technical hurdles, and discusses immobilization strategies crucial for achieving the 
reproducibility and scale required for industrial adoption. 
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Rooted in their unique properties, the advent of nanomaterials has permanently reshaped the approach to 
biosensing. Nanofibrous scaffolds are particularly promising due to their high surface area to volume ratio. 
Among the techniques available for their fabrication, electrospinning has emerged as a predominant method. 
Compared to alternatives such as melt blowing or force spinning, electrospinning offers a superior 
combination of operational simplicity, cost-effectiveness, and unparalleled control over producing continuous 
nanofibers with tunable morphology and composition. This versatility allows for the integration of diverse 
functional materials beyond the base polymer, making it a powerful tool for creating sophisticated sensor 
platforms 1. 

A highly effective strategy in this matter involves the development of nanocomposites that leverage the unique 
natural properties of distinct materials. In this context, chitosan, a natural biopolymer, is an ideal choice for 
the primary matrix. Its inherent biocompatibility, non-toxicity, and abundance of amine and hydroxyl 
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functional groups provide a remarkable substrate for the stable immobilization of biological recognition 
elements. To enhance the functionality of this biocompatible scaffold, particularly for electrochemical 
applications, conductive materials such as graphene and its derivatives can be incorporated in the electrospun 
matrix. Renowned for their extraordinary mechanical strength and exceptional electrical conductivity, 
graphene-based materials act as a conductive backbone, facilitating efficient electron transfer and enhancing 
the signal transduction necessary for high-sensitivity detection2. 

The integration of these components via electrospinning yields multifunctional biosensing platforms. 
Therefore, providing a unique synergy of high surface area, adjustable porosity, and enhanced conductivity 
collectively improves sensitivity and selectivity. However, despite these significant advantages, the translation 
of these platforms from laboratory to real-world application is hindered by several critical challenges. Major 
issues include achieving consistent conductivity throughout the mat, ensuring the long-term stability and 
activity of immobilized enzymes, overcoming batch-to-batch fabrication variability, and validating sensor 
performance in complex biological or environmental samples. 

Therefore, this review article critically examines the state of the art in biosensors based on electrospun chitosan 
graphene composites. This work analyzes the synergistic interplay between these materials, evaluates current 
fabrication and biomolecule immobilization strategies, and discusses the primary scientific and engineering 
challenges that must be addressed to enable their practical implementation.  

Electrospinning, an advanced fabrication technique  

Electrospinning is an advanced fabrication technique widely recognized for producing continuous fibrous 
structures at the nanoscale. This bottom-up technique relies on electrostatic forces to elongate a polymeric 
solution, resulting in the formation of nanofibers3. The process involves applying a high voltage electrostatic 
field between two electrodes: a nozzle connected to a syringe and a metallic collector plate. This applied 
voltage overcomes the solution’s surface tension, causing the droplet at the nozzle tip to deform into a cone-
shaped structure known as a Taylor cone4. Once a critical point is reached, a fine jet of the polymer solution 
erupts from the cone’s apex. As this jet travels toward the collector, the solvent evaporates, and the jet 
undergoes significant stretching and thinning. The solidified, continuous fiber is then deposited onto the 
collector, forming a non-woven, porous fibrous mat 5. Conventionally, electrospinning uses polymer solutions 
in organic solvents, with common polymers including nylon, polyester, and polylactic acid. Recent 
advancements have incorporated a broader range of materials, including ceramics, metals, and other inorganic 
and organic substances, as well as biological macromolecules like proteins and genes6. This ability to create 
composite materials opens the door to a new generation of advanced materials with industrial opportunities in 
biomedicine, filtration, energy, and environmental science.  

Electrospun materials exhibit several highly desirable characteristics, including a high specific surface area, a 
highly interconnected porous structure, and high loading capacity and encapsulation efficiency7. The 
exceptionally high surface area to volume ratio of these scaffolds is particularly advantageous, as it enhances 
cell attachment, increases drug loading capacity, and improves mass transfer properties8. Therefore, they can 
serve as protective matrices for sensitive molecules like proteins and genes, leading to stable formulations 
with sustained release capabilities, which makes them highly valuable as drug carriers and as porous, 
biodegradable scaffolds that provide structural support for cells in tissue engineering 7. Consequently, they 
are widely used in medical prostheses and advanced wound healing solutions. Beyond biomedicine, 
applications extend to specialized textiles, such as waterproof breathable fabrics, and agriculture, where 
nanofiber webs carrying pesticides can be formed directly on plants to protect them from insects without the 
need for direct spraying.  

The morphology and properties of the end material are highly dependent on the process parameters. 
Fundamental factors such as the viscosity and electrical conductivity of the polymer solution, as well as the 
applied voltage, directly influence the diameter of the fibers, which can range from micrometers to a few 
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nanometers, but also control the pore size and spatial arrangement of the fibers, facilitating the formation of 
tailored nanofiber networks9–12. By carefully regulating these operational conditions, it is possible to fabricate 
membranes with diverse morphologies and properties for specific applications. This tunability enables the 
creation of specialized materials with unique properties, ideal for a wide range of applications.  

Electrospun biosensing matrices  

A particularly promising application of electrospun nanofibers is in the field of biosensing. As seen in Figure 
1,  a biosensor is an analytical device that combines a biological recognition element with a physicochemical 
transducer to detect a specific substance, or analyte 13,14. They are typically classified based on their 
transduction mechanism, such as electrochemical, optical, or thermometric systems15   The biomolecules 
responsible for recognition are generally immobilized on the surface of the detection component. When they 
interact with the target analyte, they generate physicochemical changes that the transducer measures as signals. 

Biosensors are widely used in disease diagnostics, food safety, and environmental monitoring because 
conventional analytical methods, while powerful, are not always practical for rapid, accessible, or continuous 
monitoring. However, the practical application of typical biosensors is often limited by issues of low surface 
area, detection limits, and slow analyte diffusion. Electrospun nanofibers offer a great solution to these 
challenges. The nanoscale dimensions of the fibers create a massive surface area, making the transducer 
materials more active and accessible to the analyte. With diameters ranging from tens to hundreds of 
nanometers, electrospun fibers fall perfectly within this ideal regime, creating an entangled network that 
enhances sensor performance. To develop functional biosensors, nanofibers are often integrated with various 
active materials16. For instance, carbon-based materials like graphene oxide, carbon nanotubes, and carbon 
dots are widely used due to their high electrical conductivity and ease of functionalization 2. To illustrate, 
composites of conductive polymers, such as polyaniline (PANI), with carbon nanotubes can be electrospun to 
form highly sensitive electrochemical biosensors for glucose and other biomarkers. 17   

   

Figure 1. Schematic representation of a biosensor device based on electrospun fibers. The diagram shows the electrospinning 
process from a polymer solution syringe (Taylor cone formation and nanofiber membrane deposition), integration of the 
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nanofiber membrane into a biosensor chip, and detection through a sensing layer that converts biological information into 
an electrochemical signal transmitted by the transducer. 

Electrospun carbon-chitosan biosensors 

Natural biopolymers like chitosan, silk fibroin, and hyaluronic acid are often blended with other polymers to 
enhance the biocompatibility and functionality of electrospun biosensors. Among these, chitosan stands out 
as a biocompatible, biodegradable, non-toxic, and hydrophilic material, making it safe for medical and 
environmental applications. Chitosan is a polysaccharide derived from the deacetylation of chitin, which is 
the second most abundant polysaccharide in nature and a primary component of crustacean exoskeletons. Its 
functional groups (amino and hydroxyl) enable chemical modification and direct conjugation with sensing 
elements like enzymes or antibodies, enhancing specificity. These properties, combined with their cost-
effectiveness and rapid degradability, allow the creation of sensitive, selective, and stable biosensors for a 
wide range of analytes, including glucose, hydrogen peroxide, uric acid, and hormones such as 
acetylcholine18–22.   
 
However, chitosan presents several challenges when used in its pure form, particularly during the 
electrospinning process. Due to its poor chain entanglement, it’s inherently difficult to electrospin alone, often 
leading to a non-uniform fiber morphology. Consequently, it is frequently blended with synthetic polymers 
such as polyvinyl alcohol (PVA), polylactic acid (PLA), and polyethylene oxide (PEO) to enhance its 
spinnability and overcome this limitation. Furthermore, materials composed of pure chitosan often exhibit 
inadequate mechanical strength. Therefore, its blending or crosslinking with other synthetic materials is not 
only beneficial for processing but also serves a critical purpose in improving the structural integrity and overall 
mechanical properties of the final product. This strategic modification allows for the creation of more robust 
and durable materials. 
 
Other materials often used in electrospinning are metal nanoparticles or metal oxides because they can 
significantly boost sensor sensitivity. They can enhance electrochemical signals and improve optical 
transduction mechanisms. Among these types of materials, carbon nanomaterials have garnered considerable 
attention over the last decade, serving as a focal point of extensive research due to their unique structures and 
properties. Carbon nanofibers (CNFs), obtained in the electrospinning, constitute a category of cylindrical 
nanocarbon materials characterized by diverse stacking arrangements of graphene sheets23, in contrast to the 
more commonly utilized carbon nanotubes. Carbon nanofibers present advantages such as reduced costs, 
superior mechanical stability, and a higher ratio of surface-active groups to volume. The outer surfaces of 
carbon nanofibers contain a greater number of edge sites compared to carbon nanotubes, which enhances the 
electron transfer of electroactive analytes. This characteristic renders these nanomaterials particularly suitable 
for use in biosensor transducers designed to improve signal processing. 24 The electrical properties inherent to 
these materials have facilitated the development of highly sensitive and selective biosensors capable of 
detecting various analytes23,25. 
 
Literature reviews and studies indicate that carbon nanofiber-based biosensors enhance selectivity for target 
analytes in complex matrices such as urine, serum, and food products. For instance, Kaewda et al.26 presented 
a label-free electrochemical biosensor that employs polyaniline/carbon nanotube nanofibers; this sensor 
exhibited significant selectivity for dopamine, even in the presence of common interferents such as glucose, 
ascorbic acid, and uric acid. The sensor maintained consistent performance when evaluated in artificial urine, 
confirming its selectivity within a complex biological matrix. Nonetheless, it is noteworthy that the sensor’s 
selectivity and reliability were assessed in artificial urine rather than in actual human biological specimens. 
Artificial matrices may not accurately replicate the intricacies of real samples, which could encompass 
additional interfering substances, proteins, or variables in pH and ionic strength that may influence sensor 
performance. Moreover, carbon nanofiber biosensors have shown high selectivity in detecting cancer 
biomarkers in human plasma. Maleki et al.27 developed an electrospun nanofiber biosensor modified with 
carbon-based materials and ZIF-8 nanoparticles that achieved high selectivity for the c-MET cancer biomarker 
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in human plasma. This sensor demonstrated strong selectivity against other proteins, along with impressive 
reproducibility and stability within real plasma samples. Although the biosensor exhibited good short-term 
stability, this study does not address its long-term operational stability or performance following extended 
storage or multiple usages. This enhancement is attributed to their extensive surface area, tunable surface 
chemistry, and ability to immobilize selective recognition elements 28,29. However, challenges related to 
production costs, purification processes, and the controllable synthesis of these materials require further 
investigation. 
Furthermore, more advanced scientific methodologies are required to gain a comprehensive understanding of 
the catalytic mechanisms involving carbon nanomaterials in sensors for redox reactions in the future. A notable 
challenge in the fabrication of biosensors from carbon fibers lies in their limited solubility. As a result, the 
conventional approach for developing electrochemical biosensors typically involves dispersing carbon 
nanofibers in a suitable medium before immobilizing them onto solid substrates.  
  
Stability challenges of electrospun enzyme biosensors based on carbon–chitosan materials 
 
Industrial environments require biosensors to operate continuously and accurately over long periods. 
Instability leads to signal drift, reduced sensitivity, and unreliable results, which can compromise product 
quality, safety, and regulatory compliance30. To enhance stability and activity, techniques such as 
immobilization, chemical modification, and genetic modification are used, with immobilization being the 
preferred method for its efficiency and cost-effectiveness. The support material must secure the biomolecules 
to the transducer, maintain their function, and allow analyte diffusion. Optimizing immobilization on graphene 
and carbon-chitosan fibers can improve stability, though complete prevention of denaturation is difficult31. 
Various immobilization strategies can be envisioned: adsorption, covalence, entrapment, crosslinking, or 
affinity32. Table 1 summarizes the most recent advances in the development of sensors based on 
chitosan/graphene electrospun fibers and their immobilization method.  
 
Adsorption is considered the simplest approach for immobilizing biomolecules onto electrode surfaces. Xie 
et al. 33 created a biosensor using an adsorption method to detect trichloroacetic acid (TCA), sodium nitrite 
(NaNO2), and potassium bromate (KBrO3). They modified a carbon ionic liquid electrode with Co3O4-doped 
carbon nanofiber and immobilized hemoglobin on its surface. The Co3O4–CNF nanocomposite allowed for 
electrochemical detection of TCA (40.0 to 260.0 mmol L−1), KBrO3 (0.1 to 48.0 mmol L−1), and NaNO2 
(1.0 to 12.0 mmol L−1). However, the long-term stability and performance after repeated use were not 
addressed. Baek et al.34 developed a glucose biosensor using nanofibers made from graphene oxide (GO) and 
polyvinyl alcohol (PVA). The fibers were electrospun onto gold chips and coated with gold nanoparticles. 
They combined glucose oxidase (GOx) and horseradish peroxidase (HRP) with copper nanoflowers to create 
the Cu-nanoflower@AuNPs-GO nanofibers. Testing showed these fibers had strong catalytic properties and 
selectivity for converting glucose to gluconic acid. However, the biosensor was only evaluated with standard 
glucose solutions, lacking validation with complex biological samples like blood or serum, which may contain 
interfering substances.   
 
In addition, Dhawane et al.35 created a chitosan/PVA nanofiber biosensor for colorimetric cholesterol 
detection. They immobilized cholesterol oxidase and horseradish peroxidase on nanofibers, achieving 
maximum loading after six hours. Colorimetric assays showed a linear response to cholesterol concentrations 
from 50 to 300 mg dL−1, with a limit of detection of 50 mg dL−1. The sensor was tested with standard 
solutions, but not with real biological samples, which may introduce interference. Wang et al.6 developed an 
electrospun nanofiber-based electrochemiluminescence (ECL) immunosensor for detecting the tumor 
suppressor protein p53 (TSP53). In their work, multiwalled carbon nanotube-doped chitosan (MWCNTs-
CTS) nanofibers were fabricated through a one-step electrospinning technique, followed by the in situ 
electrodeposition of gold nanoparticles (AuNPs) to modify the surface of the MWCNTs-CTS nanofibers. The 
resultant hybrid nanofibers (MWCNTs-CTS-AuNPs) were then utilized as supportive scaffolds for the 
immobilization of the TSP53 capture antibody through an adsorption process. The study does not provide data 
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on the long-term operational stability, reproducibility across batches, or performance after storage, which are 
critical for clinical and commercial applications.  
   
  
Another method for enzyme immobilization involves covalent bonding, which ensures a strong attachment of 
enzymes to the nanofiber matrix. This approach minimizes leaching and enhances the reusability and stability 
of various enzyme types. For example, Yildirimgil et al. 18 created a fast and highly sensitive enzymatic 
biosensor using electrospun nanofibers designed for detecting acetylcholine (ACh). This biosensor utilizes 
dual enzyme reactions that involve acetylcholine esterase (AChE) and choline oxidase (ChO), both of which 
are immobilized onto polypyrrole (PPy) and chitosan (CS)-based electrospun nanofibers. The immobilization 
process was achieved through two methods: covalent bonding and entrapment in chitosan. Testing the 
biosensor on spiked serum samples demonstrated its ability to accurately detect ACh, highlighting its potential 
for clinical diagnostics and neurological research. In a 2020 study, Yezer et al. 19 combined cellulose acetate 
and chitosan to produce CA–CS nanofibers via electrospinning. After successfully developing the CA–CS 
nanofibers, glucose oxidase was chosen as a model biomolecule for immobilization. The presence of amine 
groups on the surface of the CA–CS nanofibers was crucial for enzyme immobilization through covalent 
bonds. The performance of the CA–CS/GOx system was then evaluated for glucose sensing.  
 
Another approach for immobilizing bioactive molecules is entrapment. Unlike absorption and covalent 
immobilization, which rely solely on the outer surface of the nanofibers, entrapment also utilizes the internal 
volume as a supportive matrix for the bioreceptor. By embedding target-binding sites within electrospun 
nanofibers, biological molecules are shielded from unfavorable conditions, which helps maintain their activity, 
enables controlled release, and reduces leaching problems. For example, Sauntzi et al.36 describe a method for 
fabricating water-stable electrospun nanofibers using a photo-cross-linkable polymer (PVA-SbQ), 
carboxylated multiwall carbon nanotubes (MWCNT-COOHs), and glucose oxidase (GOx) for 
electrochemical biosensors. The materials are blended, electrospun, and then made water-insoluble with UV 
irradiation. These nanofibers enhance electrical properties and allow for sensitive glucose detection (2 μM 
limit, up to 4 mM range) due to GOx immobilization through blending and crosslinking. However, there is a 
risk of enzyme leaching over time, and the carbon nanotubes may introduce background signals that could 
affect detection accuracy. 
 
Analysis of the studies in Table 1 shows that while entrapment is quick and cost-effective for developing 
biosensors, covalent immobilization is better suited for applications requiring durability and reusability. 
Covalent immobilization generally offers better stability and reusability in biosensors, while entrapment 
preserves enzyme activity effectively37. For large-scale biosensor production, covalent immobilization is 
preferred because of its reproducibility, durability, and suitability for automated manufacturing. This method 
creates strong bonds between enzymes and support materials, enhancing performance. However, it can lower 
enzyme activity due to changes in structure or orientation during binding, which may reduce sensitivity 
efficiency38,39. Biosensors are frequently not thoroughly tested in complex environments, limiting their 
practical use. Currently, electrospun chitosan/carbon nanofiber biosensors show considerable potential for 
clinical, food, and environmental applications, but they are not yet commercially available, with most 
developments still in the academic or prototype stages. The latest research in this field, involving electrospun 
nanofiber-based materials, was conducted by Yildirim et al.18, who developed a highly sensitive. In this study, 
selectivity tests indicated minimal interference from other substances, and stability assessments confirmed 
reliable performance over 30 days.  
 
Crucial challenges in real-world applications include enzyme denaturation, leaching, and limited operational 
lifetimes. Studies in Table 1 have demonstrated the successful fabrication and laboratory validation of 
electrospun base biosensors, including those for glucose, dopamine,  acetylcholine, lactate, cholesterol, and 
tumor suppressor protein. However, despite their promising performance in research settings, there is no clear 
evidence that such biosensors have reached commercial availability. Reviews and market analyses 
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consistently note that most chitosan/carbon electrospun fiber biosensors remain at the prototype or academic 
research stage, with significant barriers to regulatory approval, mass production, and market entry. 
 

 
Table 1. Electrospun Chitosan/Graphene-Based Biosensing Platforms: Studies, Applications, and Limitations. 
The table summarizes fiber composition, target analytes, immobilization methods, reported performance, key limitations, 
and current development status (prototype or academic research). Superscript numbers refer to the original studies cited in 
the References section.  

 
Challenges and Regulatory framework for industrial upscaling of electrospinning-based biosensors  
Despite being a powerful technique, the widespread commercialization of electrospun biosensors is hindered 
by several significant hurdles. A primary concern is the mechanical integrity of the electrospun mats45. Their 
inherently porous, non-woven structure often results in poor mechanical strength, compromising the durability 
and operational lifespan of biosensors intended for physically demanding applications. Furthermore, process 
chemistry presents sustainability and functional challenges. The reliance on volatile and often toxic organic 
solvents for polymer dissolution not only complicates safe and environmentally sound large-scale 
manufacturing but also introduces the risk of residual solvent contamination, which can denature immobilized 
bioreceptors and degrade sensor performance.   

The most critical challenge lies in ensuring process consistency and product stability. The electrospinning 
process is notoriously sensitive to minor fluctuations in parameters such as voltage, flow rate, and ambient 
humidity. These variations can lead to significant batch-to-batch differences in nanofiber morphology, which 
in turn directly impacts sensor performance metrics like sensitivity, specificity, and response time. This lack 
of reproducibility, coupled with the potential degradation of the nanofibrous matrix or the biological 
recognition elements over time, severely compromises the reliability and shelf-life required for commercial 
validation.  
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Beyond these intrinsic material and process limitations, the primary manufacturing bottleneck is the inherently 
low throughput of conventional electrospinning. Traditional single-needle setups produce nanofibers at a rate 
fundamentally incompatible with the demands of high-volume industrial manufacturing. To address this, 
significant research has focused on scaling up production46. Strategies include parallelization through multi-
needle arrays and, more promisingly, the development of needleless electrospinning techniques that utilize 
rotating emitters or free surface induction to generate a multitude of fiber jets simultaneously. While these 
innovations are paving the way toward industrial viability, achieving the same level of fine morphological 
control as single-needle systems at scale remains an active area of research. 

The regulatory environment for advanced biosensors is still developing, with challenges in reproducibility, 
quality control, and compliance with international standards. There are no standardized protocols for quality 
control and performance verification in electrospinning-based biosensors 47. Despite advancements, 
Nanospider is currently the only commercial instrument used in pharmaceuticals. Scaling up and 
manufacturing present unique challenges in the nanomedicine field. Understanding the interacting 
components is crucial for identifying key product characteristics and determining critical manufacturing steps 
that ensure reproducibility. Nanofiber production methods fall into ‘top-down’ and ‘bottom-up’ categories 48. 
The Quality by Design (QbD) approach addresses these challenges by defining critical quality attributes 
(CQAs) for a quality target product profile (QTPP) early in development49. It promotes a systematic, risk-
based strategy for managing the development and manufacturing processes (ICH Q8 (R2), ICH Q9, ICH Q10). 
By assessing key variables that impact safety and efficacy, QbD enhances reproducibility, batch consistency, 
and scalability, improving the chances of regulatory approval50. 

A major challenge is how follow-on nanomedicines (nanosimilars) navigate approval pathways. In the EU, 
“hybrid” applications attempt to balance different levels of preclinical and clinical data, but the lack of 
nanotechnology-specific guidelines complicates submissions. Several initiatives at national and international 
levels aim to standardize nanoparticle characterization and safety assessment. Programs like the ‘Assay 
Cascade Protocols’ and the Nanotechnology Characterisation Laboratory (NCI-NCL in the USA and EU-NCL 
in Europe) provide structured methods for evaluating nanoscale materials in health products. These initiatives 
promote consistent data reporting and robust methodologies, facilitating global collaboration and clearer 
pathways for the approval of natural health products51. Integrating nanomanufacturing standards into a 
classification system would help stakeholders quickly identify products needing environmental attention, 
guiding development and regulation. Efforts to modernize regulatory frameworks and promote standardized 
testing, alongside AI-driven methods and a shift to sustainable practices, indicate a promising future for 
nanomedicine52. However, enhanced collaboration across scientific, governmental, and industrial sectors is 
essential. By advancing eco-friendly production, refining safety assessments with AI, and harmonizing global 
data requirements, the international community can better balance innovation with public health, ensuring safe 
and efficient delivery of nanotechnology-based health products to patients. 

Future directions 

Electrospun chitosan/graphene-based biosensing platforms have rapidly advanced due to their unique 
properties, including high surface area, biocompatibility, and exceptional electrical conductivity. These 
qualities enable sensitive and selective detection of a wide range of analytes53. Recent studies have 
successfully integrated these nanofibers with various enzymes, antibodies, and aptamers for applications in 
clinical diagnostics, environmental monitoring, and food safety (54, 55). However, challenges remain regarding 
large-scale production, long-term operational stability, and the creation of robust, interference-resistant, 
multiple biosensors. Future research is expected to address these issues by focusing on advanced 
immobilization methods and scalable production 44,56,57. 

The combination of enzyme immobilization techniques with biosensors has become a significant area of 
research. This approach aims to enhance the stability of enzymes used in biological detection systems, with 
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sensor surface modification playing a critical role in this process. Most studies on enzymatic biosensors focus 
on how immobilization affects sensitivity, selectivity, and stability. This emphasis is warranted, as changes in 
enzyme activity directly impact these essential performance metrics, which are crucial for evaluating sensor 
effectiveness. In sensing applications, it is vital to detect the analyte within the target range while generating 
the strongest possible signal. However, the complex effects of enzyme immobilization on activity and sensor 
performance are often overlooked. These factors can significantly influence sensitivity, selectivity, and 
stability58. Maintaining the enzyme’s structure during the immobilization process is vital, as it affects catalytic 
activity. However, random covalent bonding can alter the enzyme’s structure, potentially leading to 
denaturation. Therefore, it is important to study how different immobilization techniques and support materials 
impact the enzyme’s conformation.  
   
Additionally, the complexity of fabrication and reproducibility are major barriers to commercial applications. 
Multi-step procedures, precise synthesis of nanomaterials, and dependence on sophisticated equipment can 
impede scalability and increase biosensor costs. Scaling up the production of chitosan/carbon biosensors with 
consistent quality, integrating them into wearable and portable devices, and ensuring regulatory compliance 
and preclinical validation are critical for real-world deployment. Addressing these challenges will be essential 
for translating laboratory advances into practical biosensing solutions for healthcare, environmental safety, 
and food quality assurance. Furthermore, mechanical and environmental durability, particularly in flexible 
and wearable devices, requires further innovation. Most electrospun nanofiber-based biosensors utilize 
electrochemical transduction mechanisms. In this context, future devices that employ alternative transduction 
technologies are likely to be explored more thoroughly, potentially enhancing sensor performance. Despite 
these challenges, the field is rapidly advancing. Opportunities for improvement include developing advanced 
immobilization techniques, anti-fouling coatings, flexible device integration, and environmentally sustainable, 
scalable fabrication methods. The use of hybrid nanocomposites and non-enzymatic catalytic materials is 
expected to enhance performance and operational stability further.  
  
  
 
 
  
Combining the biocompatibility of chitosan with the exceptional conductivity of carbon nanofibers is 
essential. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface, and 
chitosan functions as a biopolymer matrix, providing a conducive environment for enzyme immobilization 
and facilitating electron transfer. Since the biosensor operates as a precision instrument, even minor changes 
in the structure of the fiber membrane and electrodes can significantly impact its detection capabilities. Thus, 
modifying the biosensor can help assess its detection performance. Importantly, modification methods go 
beyond merely altering the nanofiber membrane; they also involve utilizing the fine structures of both the 
nanofiber membrane and the electrodes of the biosensor. This approach can effectively immobilize the 
enzyme, enhancing both the enzyme’s stability and the biosensor’s sensitivity and selectivity.  
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